Abstract:The matrix multiplication-based convolutional algorithm, which can efficiently implement convolutions with different parameters, is the first choice of convolution performance optimization for a given chip. Based on the architecture of Phytium heterogeneous multi-core DSPs(digital signal processors) developed by National University of Defense Technology and the characteristic of the matrix multiplication-based convolutional algorithm, a parallel implementation of the matrix multiplication-based convolutional algorithm (called ftmEConv) for different convolutions on multi-core DSPs was proposed. The ftmEConv consists of four parallelized parts(input feature maps transformation, filter transformation, matrix multiplication, and output feature maps transformation), all of which were optimized for multi-core DSPs, and the performance of each part was improved by effectively exploiting the potential of all functional units in DSP cores. The experimental results demonstrate that ftmEConv achieves computational efficiency of up to 42.90%. Compared with other implementations of the matrix multiplication-based convolutional algorithm on heterogeneous chips, ftmEConv gets a speedup of up to 7.79 times.