Abstract:To address the problem of mitigating asynchronous non-stationary interference in single-channel conditions, a data-driven sparse component analysis method was proposed. The aim of this method is to recover the desired signal from the received mixed signals. This method used the powerful modeling ability of deep convolutional neural network to model the complex mapping between the input and output data, and realized the adaptive selection of sparse domain of target signals, the adaptive learning of sparse representation of target signals in sparse domain, and the automatic recovery of target signals. Unlike the previous interference mitigation algorithms, the proposed method completed the “end-to-end” signal waveform recovery in the time domain, and had no prior requirement for aliasing observation, which was more universal than the existing methods. Simulation experiments verified the effectiveness of the proposed interference mitigation method under different environmental noise and interference signal strength and generalization test conditions, and the interference mitigation performance is significantly better than the existing algorithms.