摘要
针对飞翼布局无人飞行器中S弯进气道明显流动分离和出口总压畸变等问题,提出了基于合成双射流的主动流动控制方法,建立了合成双射流的S弯进气道数值仿真模型。结果表明,在S弯进气道分离点附近施加合成双射流控制,在整个射流周期内通过“吹”“吸”接力可以有效抑制边界层流动分离,有效提升总压恢复系数。对比研究了合成双射流不同射流角度、射流峰值速度和激励频率对S弯进气道流场控制特性的影响规律。结果表明合成双射流与主流的角度越小,流动分离控制效果越好,较大射流峰值速度会对主流形成“阻挡”致使控制效果下降,激励频率与流场特征频率越接近控制效果越明显。
Abstract
S-bend inlet leads to obvious flow separation and apparent total pressure distortion in unmanned aerial vehicle. To solve this problems, an active flow control method based on dual synthetic jets was proposed accordingly. The numerical simulation model of S-bend inlet with dual synthetic jets was established. The results show that dual synthetic jets can effectively suppress the boundary layer flow separation near the separation point of S-bend inlet through "blowing" and "suctioning" in the whole jet cycle, and effectively improve the total pressure recovery coefficient. The effects of different jet angles, jet peak velocities and jet frequencies on the flow field control characteristics of S-bend inlet were studied. The results shows that the smaller the angle between the dual synthetic jet and the main stream is, the better the flow separation control effect will be. The larger jet peak velocity will form a "blocking" effect on the main stream, resulting in a decrease in control effect. The closer the jet frequency is to the characteristic frequency of the flow field, the more obvious the control effect will be.
S弯进气道已成为飞翼布局无人飞行器的首要选择。S弯进气道结构紧凑,研究表明飞行器机身每缩短1个进气道直径长度,飞机重量将减少15%[1]。将背负式进口布局与S弯进气道相结合可减小前向雷达散射面积,提高翼身融合飞行器隐身性能。现代高隐身性能飞行器(如美国的F-22和F-35)和高隐身无人作战飞机(如美国的X-47B、RQ-180,英国的“雷神”等)普遍使用了S弯进气道。
进气道作为飞行器动力系统的“咽喉”,其流场品质会直接影响发动机的性能和工作状态的稳定,从而影响飞行器推进系统的动力性能。相比常规进气道,S弯进气道的曲率和截面形状变化更加剧烈,沿流向逆压梯度大,弯后易形成分离[2-4]。当流体通过两个弯时,离心力将产生相反的压力分布,从而导致侧压力梯度和二次流的发生。这些综合效应可能会导致进气道出口的压力不均匀和总压损失[5-6]。发动机的净推力会降低,非均匀性会导致叶片结构疲劳[7]。
因此,亟须高效的进气道流动控制技术,以减小发动机推力损失,提升作战飞机飞行性能。流动控制技术主要包括主动流动控制和被动流动控制两类。被动流动控制主要通过在进气道内布置诸如涡流发生器、鼓包等以改变进气道边界条件[8-12]。被动流动控制技术不能随着工作环境的改变而改变,适应工况范围较窄。与被动流动控制技术相比,主动流动控制技术通过注入一定的能量对主流流场施加扰动,实现“四两拨千斤”的效果。主动流动控制更加有效灵活,能够适应更多的复杂情况,更适合S弯进气道的复杂工作环境[13]。Kwong等[14]发现射流控制能有效提高总压恢复系数。Vaccaro等[15]发现在第一弯施加控制有较好的效果,且对非定常射流控制效率更高。Ball等[16]发现抽吸控制亦可减少进气道内的流动分离。马志明[17]验证了射流振荡器对S弯进气道的控制效果。Yang等[18]通过数值计算发现等离子体控制可使S弯进气道畸变指数降低6.7%。Liu等[19]利用等离子体合成射流将S弯进气道的出口稳态畸变指数降低9.15%。合成射流技术则通过活塞或者膜片的正弦运动形成周期变化的射流,相比传统射流,无须额外的工质,又称零质量射流[20-21]。Jenkins等[22]将合成射流与涡流发生器的控制效果进行比较,验证了合成射流控制S弯进气道的应用潜力。Amitay等[23]和Dandois等[24]发现合成射流可有效控制分离泡的尺寸。何鹏等[25]研究了两种合成射流出口布置方式对控制效果的影响。
罗振兵等[26-29]发明的合成双射流控制技术无气源、无管路、结构对称,易于小型化和集成化设计,其能量利用效率是传统合成射流技术的两倍,且具备独特的矢量功能和高速流场控制能力。合成双射流可应用于内外流场流动分离控制[30-31]。其中,合成双射流对外流场的控制能力已在无人机平台得到验证[32-33]。合成双射流控制S弯进气道内流场的流动分离和二次旋流畸变的潜力很大,具有很好的应用前景。
本文在前期合成双射流外流场主动流动控制的研究基础上,针对S弯进气道流动分离造成流道堵塞、总压损失过大和旋涡引起的流场畸变严重等问题,提出了S弯进气道合成双射流主动流场控制方法,通过流体动力学仿真分析不同控制参数对S弯进气道的流场控制规律,为后续具体应用提供理论指导。
1 S弯进气道计算模型及流场特性分析
1.1 计算模型
本文采用前急后缓的S弯进气道模型进行计算分析,其结构如图1所示。该进气道的S弯段长度为585 mm,弯道出口截面直径为150 mm,出口、入口面积比为1.875,S弯进气道模型偏距为225 mm。该进气道几何模型的中心线控制方程为:
(1)
式中,y为中心线纵坐标,x为中心线横坐标,Δy为进气道偏距,L为进气道横向尺寸。
图1S弯进气道结构示意图
Fig.1Structural schematic diagram of S-bend inlet
1.2 数值计算方法
本文使用ANSYS FLUENT软件对S弯进气道开展二维数值计算工作。模拟来流工况为10 000 m高空,来流静压为26 474 Pa。进气道上下壁面均设为绝热无滑移壁面。考虑流场中的压缩性,求解器使用密度基求解器,使用有限体积法进行离散,对流项为二阶迎风格式,耗散项为一阶迎风格式。
考虑对进气道流动分离进行研究,湍流模型采用适用于流场逆压力梯度计算的剪切应力输运(shear stress transport,SST)k-ω模型。
选用3套不同疏密程度的网格进行无关性验证,网格数分别为6 800、13 500、18 200。表1给出在来流马赫数(Ma)为0.735的工况下,各网格的计算结果。当网格数达到13 500时,可保证有足够的计算精度。
表1不同网格的S弯进气道总压恢复系数
Table1Total pressure recovery coefficient of S-bend inlet with different grids
合成双射流激励器工作时,其中的膜片周期性振动,形成的合成双射流也就存在周期性特性,因此,在分析S弯进气道在合成双射流激励器下的出口总压恢复时(包括S弯进气道无控制时的定常流场状态),采用一周期内平均总压恢复,定义如下:
(2)
式中,为不同时刻的出口平均总压,为进气道入口来流总压,σ1T为一周期内进气道出口平均总压恢复系数。
1.3 流场特性分析
本文选用的进气道模型为高亚声速进气道,首先分析进气道速度来流Ma在0.4~0.8范围内的流场变化。
S弯进气道流场分布如图2所示,图中X、Y分别为计算域横纵坐标,分析发现在S弯进气道下壁面第一弯处出现高能流场区域,在进气道后半段整个流场速度降低。在下壁面第二弯附近产生了严重的流动分离,并在中心区域产生流场旋涡,在出口上壁面区域也有轻微流动分离现象。图3为不同来流Ma下S弯进气道流动分离情况,对比分析发现,随着来流Ma的增加,S弯进气道下壁面流动分离区域显著增大。这是因为来流Ma的增大,导致流场在S弯处边界层厚度增加,逆压力梯度增大,在下壁面聚集了大量低能流体;同时由于来流速度的上升,进而削弱了进气道抵抗流动分离的能力,流动分离区增大且会产生更大的旋涡流场。
图2S弯进气道流场分布
Fig.2Flow field distribution of S-bend inlet
图3不同来流Ma下S弯进气道流动分离情况
Fig.3Flow separation of S-bend inlet at different inlet Ma
2 合成双射流S弯进气道流场控制
合成双射流流动控制技术作为无源无管路主动流动控制技术之一,其原理是通过产生周期性非定常射流与外部流场主流进行相互作用,实现对主流流场的有效调控。利用数值模拟对S弯进气道边界层流动分离在合成双射流激励器作用下的控制效果进行研究,分析不同控制参数的影响作用规律。数值仿真模型如图4所示。为简化计算,射流出口采用周期速度边界条件,左、右射流出口速度分别定义为:
(3)
(4)
其中,ul、ur代表左、右出口射流的瞬时速度,Umax代表合成射流出口速度峰值,f为激励频率,S弯进气道来流Ma为0.735。定义无量纲频率为:
(5)
图4合成双射流S弯进气道控制模型
Fig.4Control model of S-bend inlet with double synthetic jets
式中,Ls为原始流场的分离区x向长度,U∞为来流速度。定义射流的动量系数为:
(6)
式中,H为合成双射流出口的缝宽。
2.1 不同周期时刻流场控制特性
本节观察施加合成双射流后流场特性。来流Ma为0.735,射流峰值速度为50 m/s,频率为300 Hz,射流角度为90°。图5为合成双射流激励器在不同周期时刻对S弯进气道流动分离控制效果,通过与图3(c)控制前结果对比分析,可以看出S弯进气道施加合成双射流激励器控制之后,下壁面边界层流动分离区域明显减小,并有效削弱了边界层旋涡现象,增大了流场有效截面积。合成双射流主要通过“吹”“吸”对S弯进气道施加流动控制,激励器通过“吹”将高能流体注入边界层,提高边界层低能流体的速度,减少流动分离,通过“吸”将边界层的低能流体吸入激励器腔体,降低边界层的逆压力梯度;此外,合成双射流激励器的左、右出口形成的旋涡流场,还能有效地对边界层低能流体与主流高能流体进行掺混,从而提高边界层流体能量,并降低流场的不均匀度。
图5合成双射流激励器在1T内S弯进气道流场控制效果
Fig.5Flow field control effect of S-bend inlet with synthetic double jets actuator in 1T
从合成双射流激励器施加流动控制1T内的速度云图可以看出,周期内流动分离现象都得到了有效控制,流场整体相差不大,进气道下壁面流动分离得到有效抑制。
2.2 不同射流角度对流场控制特性
在分离点附近选取了与激励器出口位置切线成30°、60°和90°三种不同角度的流场控制特性进行了对比分析。S弯进气道流动分离控制流场结果如图6所示。分析结果表明射流角度与激励器出口切线夹角为30°时控制效果最好。由图6中可见,射流角度为30°时,下壁面流动分离区域得到有效抑制和消除,下壁面旋流形成的旋涡已经消失不见;射流角度达到60°和90°时,下壁面旋流旋涡出现,控制效果明显降低,尤其是射流角度为90°时,虽然下壁面分离厚度有所减小,但是旋涡严重程度甚至还要严重于未施加流动控制时的状态。因此,不管是流动分离区大小的减小,还是对旋流的抑制,射流角度为30°时效果要远优于其他两个角度效果。
图6合成双射流不同射流角度下S弯进气道流场控制效果
Fig.6Flow field control effect of S-bend inlet with different jet angles of synthetic double jets
为了更好地了解不同射流角度时激励器对进气道的作用,绘制了图7的进气道S弯段总压曲线图。图7为在不同射流角度下的进气道出口总压分布,其中横坐标为出口截面纵向位置,纵坐标为总压。从图7中可以看出,射流角度越大,总压曲线整体左移。当射流角度越大时,合成双射流激励器高能流体被S弯进气道分离区域利用得越少。射流角度越大,其射流就更容易被注入主流当中而不是被下壁面流动分离区域所利用,激励器控制效果利用率就较低。此外,射流角度越大,激励器所合成的高能射流,还有可能起到“墙壁”凸起的作用,对主流产生阻碍,影响下游流场发展。而射流角度采用30°时,合成双射流流体更易被流动分离区域利用,效率更高。
图7合成双射流不同射流角度下S弯进气道出口总压分布
Fig.7Outlet total pressure distributions of S-bend inlet with different jet angles of dual synthetic jets
表2为不同射流角度下S弯进气道总压恢复系数。从表2中可以看出不同射流角度对进气道出口总压恢复的影响,在射流角度为30°时总压恢复系数最高,整体流场更加均匀稳定。
2.3 不同射流峰值速度对流场控制特性
合成双射流激励器射流峰值速度分别设置为10 m/s、30 m/s、50 m/s、70 m/s,对应射流动量系数为0.003 1、0.028 1、0.077 9、0.152 7,激励频率为300 Hz,射流角度为30°,图8为不同射流峰值速度作用下S弯进气道流场控制效果。
表2不同射流角度下S弯进气道总压恢复系数
Table2Total pressure recovery coefficient of S-bend inlet at different jet angles
从图8可以看出,随着合成双射流峰值激励器射流峰值速度的不断增加,可以发现下壁面低压区有所扩大,这是因为激励器的“高能”流体相对于主流来说能量是低的,其射流被边界层吸收利用,而随着射流速度增大,边界层能量随之提高,抵抗逆压梯度的能力逐渐提升,S弯进气道流动分离得到有效抑制。但是,从上壁面低压区可以看出,由于激励器产生射流对主流的“阻挡”效果,随着射流峰值速度的增加,“阻挡”效果越发明显,导致对流动分离的控制效果减弱。
图8激励器不同射流峰值速度对 S弯进气道流场控制效果
Fig.8Control effect of different jet peak velocities of exciter on flow field in S-bend inlet
表3为不同射流峰值速度下S弯进气道总压恢复系数。从表3可以看出,S弯进气道在激励器的控制下,随着射流峰值速度的增加,出口平均总压随之升高,总压恢复得到明显改善,边界层流动分离得到有效抑制;但是,也可看到当射流速度峰值超过50 m/s时,总压恢复系数有所下降,这说明射流峰值速度增大超过一定限度,可能会对控制效果产生不利的影响。射流速度过大,会导致激励器产生的控制射流对主流产生阻碍作用,由于激励器射流是存在周期性质的射流,会影响原有进气道主流的稳定性。此外,过大的射流甚至会对进气道主流起到“阻挡”的效果,阻碍主流通过。
表3不同射流峰值速度下S弯进气道总压恢复系数
Table3Total pressure recovery coefficient of S-bend inlet at different jet peak velocities
2.4 不同激励频率对流场控制特性
分析合成双射流的激励频率对S弯进气道流场特性影响,分别选取射流激励频率为300 Hz、900 Hz、1 500 Hz的非定常周期性射流对S弯进气道施加控制,对应的无量纲频率F+为0.367、1.100、1.833。图9为S弯进气道在不同激励频率控制下速度分布云图,从图9可以看出,随着激励频率增加,S弯进气道分离区呈减少趋势,当激励频率为900 Hz时分离区最小,通过分析在分离点附近流场特征频率,其大小为来流速度与对应截面直径比值,约为890 Hz,随着激励频率的进一步增加,分离区又开始呈现增大趋势,当激励频率与流场特征频率越接近时,在相同射流强度作用下,流场控制效果越明显,对S弯进气道流场改善性能最好。
图10为在不同激励频率下的进气道出口总压分布,其中横坐标为出口截面纵向位置,纵坐标为总压。从图10中分析得出,随着激励频率的增大,进气道下壁面流场总压明显提高,流场均匀性得到有效改善,结合速度分布云图可知,激励频率的提高改善了合成双射流激励器射流的周期性波动影响,使得在对S弯进气道施加流动控制时下壁面流动分离区稳定性得到加强。
图9激励器不同激励频率对S弯进气道流场控制效果
Fig.9Control effect of different jet frequencies of exciter on flow field in S-bend inlet
图10合成双射流不同激励频率下S弯进气道出口总压分布
Fig.10Outlet total pressure distributions of S-bend inlet with different jet frequencies of dual synthetic jets
图11为在不同激励频率下,进气道出口截面平均总压在一个激励周期内的变化曲线。通过图11可以看出进气道在周期内总压变化的平均特性,对比三条曲线,当激励频率为300 Hz时,其平均总压在一周期内的“光滑”程度最差,反映出该频率下的流场波动剧烈;而对于激励频率为900 Hz和1 500 Hz时,平均总压的变化曲线就显得很“光滑”,流场波动程度相对之下较为稳定。
图11不同激励频率进气道S弯段平均总压变化曲线
Fig.11Curves of average total pressure in the bend section of inlet with different jet frequencies
3 结论
合成双射流对S弯进气道流场具有显著的主动调控能力,可以有效改善S弯进气道的气动性能,有效提升进气道总压恢复系数。
1)合成双射流通过“吹”“吸”接力,当布置在分离点附近时,在一个非定常射流周期内对S弯进气道流动分离都具有很好的抑制作用。
2)合成双射流“动量注入”效果可以显著提高S弯进气道边界层抵抗逆压梯度的能力,可以有效抑制流动分离,射流角度与主流的角度越小,其注入效果越明显,控制效果越好。当射流角度与主流之间的夹角过大,射流峰值速度过大时会对主流形成“阻挡”作用,导致流动分离控制效果变差,但是由于射流“非定常掺混”效果,也可以起到提高边界层逆压的能力。
3)合成双射流激励器激励频率也会对S弯进气道流动分离产生影响,其接近流场特征频率时控制效果越好。