裂纹叶片非线性振动响应理论分析与实验验证

2021,43(6):127-134
沈国际
国防科技大学 智能科学学院, 湖南 长沙 410073;
国防科技大学 装备综合保障技术重点实验室, 湖南 长沙 410073,shenguoji@nudt.edu.cn
官凤娇
国防科技大学 智能科学学院, 湖南 长沙 410073;
国防科技大学 装备综合保障技术重点实验室, 湖南 长沙 410073
边子方
国防科技大学 智能科学学院, 湖南 长沙 410073;
国防科技大学 装备综合保障技术重点实验室, 湖南 长沙 410073
胡海峰
国防科技大学 智能科学学院, 湖南 长沙 410073;
国防科技大学 装备综合保障技术重点实验室, 湖南 长沙 410073
杨拥民
国防科技大学 智能科学学院, 湖南 长沙 410073;
国防科技大学 装备综合保障技术重点实验室, 湖南 长沙 410073,yangyongmin@163.com
摘要:
叶片裂纹严重威胁航空安全,已引发数起严重飞行事故。为诊断叶片早期裂纹,对裂纹叶片的非线性振动规律进行了理论和实验研究。建立了裂纹叶片动力学非线性模型,梳理了裂纹尺寸与动力学参数的对应关系,推导得到了非线性振动响应谐波分量功率的耦合量化关系式,结果表明叶片振动分量谐波功率与相邻分量谐波功率以及谐波分量的阶次有关,而且谐波分量相对功率与裂纹深度呈正相关。据此,提出了一种基于谐波分量相对功率的裂纹检测方法。对钢直板叶片进行了模拟仿真和振动台实验,仿真结果和实验结果都表明这种方法可以有效区分裂纹叶片和正常叶片。
关键词:
叶片  振动  非线性  谐波分析
基金项目:
国家重点基础研究发展计划资助项目(2015CB057404);湖南省自然科学基金资助项目(2019JJ50721)

Theoretical analysis and experimental verification of nonlinear vibrational response of cracked blade

SHEN Guoji
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;
Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China,shenguoji@nudt.edu.cn
GUAN Fengjiao
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;
Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China
BIAN Zifang
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;
Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China
HU Haifeng
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;
Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China
YANG Yongmin
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;
Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China,yangyongmin@163.com
Abstract:
Blade cracks pose a serious threat to aviation safety and lead to serious aviation accidents. In order to diagnose cracks at the early stage, the nonlinear vibration of cracked blades was investigated theoretically and experimentally. A nonlinear dynamic model was established to link the crack size and the dynamic parameters. A coupling quantification expression of the coupling component power in the nonlinear vibration response was obtained. This response expression indicated that the harmonic element power was determined by the adjacent component power, component order, and positively correlated with the depth of the blade crack. Therefore, based on the relative power of the vibrational components, a crack detection method is proposed. Results of the simulation and the testbed experiment both show that the cracked blades are effectively separated from the normal blades by this method.
收稿日期:
2020-09-21
     下载PDF全文