地球静止轨道航天器绕飞持续观测任务轨迹规划与控制

2024,46(1):74-86
张海涛
航天工程大学, 北京 101416,zhanghaitaoat@163.com
王伟林
航天工程大学, 北京 101416
张雅声
航天工程大学, 北京 101416
王浩
酒泉卫星发射中心, 甘肃 酒泉 735000
李智
航天工程大学, 北京 101416
摘要:
针对地球静止轨道(geosynchronous orbit, GEO)航天器的高清观测任务,成像卫星在连续小推力作用下接近GEO航天器,对GEO航天器自然绕飞并以有利的光照条件对其持续观测。针对Clohessy-Wiltshire (CW)方程的偏差问题,通过修正非球形摄动和重力加速度二次长期项偏差对CW方程进行改进,补偿非线性偏差的长期项和主要的摄动项。在轨迹规划问题上,计算绕飞轨迹的初始相位角区间,以保证成像卫星在整个绕飞任务中都能够以良好的观测角观测GEO航天器。基于CW方程和改进的CW方程对成像卫星接近和绕飞GEO航天器全过程进行仿真,基于CW方程的仿真没有达到预期目标;基于改进的CW方程的仿真达到预期目标,全过程所需施加的总速度增量仅为4.67 m/s,工程上具有很强的可行性。
基金项目:
国家卓越青年基金资助项目(2017-JCJQ-ZQ-005);国家自然科学基金资助项目(61304228)

Trajectory planning and control of continuous observation missions for geosynchronous orbit spacecraft fly-around

ZHANG Haitao
Space Engineering University, Beijing 101416, China,zhanghaitaoat@163.com
WANG Weilin
Space Engineering University, Beijing 101416, China
ZHANG Yasheng
Space Engineering University, Beijing 101416, China
WANG Hao
Jiuquan Satellite Launch Center, Jiuquan 735000, China
LI Zhi
Space Engineering University, Beijing 101416, China
Abstract:
For high-definition observation of GEO(geosynchronous orbit) spacecraft, the optical satellite approaches the GEO spacecraft with continuous low-thrust and flies around the GEO spacecraft without thrust. On the deviation of Clohessy-Wiltshire (CW) equations, CW equations are improved by accommodating the non-spherical perturbation, and the quadratic terms of the nonlinearity in the differential gravitational acceleration. The secular growth of the nonlinear deviation and the most perturbation deviation have been accommodated in the ICW(improved CW) equations. On trajectory planning, we calculate the initial phase angle interval of the fly-around trajectory to ensure that the optical satellite can take pictures of the GEO spacecraft with favorable observation angles throughout the entire fly-around mission. Simulations are conducted based on CW equations and ICW equations, respectively. The simulation based on the CW equations fails, but the simulation based on the ICW equations succeeds. The total thrust required is only 4.67 m/s, which is highly feasible in engineering.
收稿日期:
2021-09-14
     下载PDF全文