非最小相位高超声速飞行器的动态滑模镇定控制
2024,46(5):54-64
王雨潇
中国民航大学 电子信息与自动化学院, 天津 300300,wangyx@cauc.edu.cn,yy_zhao@cauc.edu.cn
丰航
中国民航大学 电子信息与自动化学院, 天津 300300
赵昱宇
中国民航大学 电子信息与自动化学院, 天津 300300,wangyx@cauc.edu.cn,yy_zhao@cauc.edu.cn
孙明玮
南开大学 人工智能学院, 天津 300350
中国民航大学 电子信息与自动化学院, 天津 300300,wangyx@cauc.edu.cn,yy_zhao@cauc.edu.cn
丰航
中国民航大学 电子信息与自动化学院, 天津 300300
赵昱宇
中国民航大学 电子信息与自动化学院, 天津 300300,wangyx@cauc.edu.cn,yy_zhao@cauc.edu.cn
孙明玮
南开大学 人工智能学院, 天津 300350
摘要:
针对高超声速飞行器非最小相位特性带来的零动态不稳定问题,提出基于B-I(Byrnes-Isidori) 标准型的模型变换方法,实现系统内、外动态的解耦。设计了一种动态积分滑模镇定控制方法,构建包含内、外部状态和动态参数变量的增广系统。提出滑模控制参数整定方法实现增广系统的闭环极点配置,使得不同工况和摄动条件下增广系统保持动态稳定,同时外部输出误差平衡点始终为零。所提方法可实现在外部输出精确跟踪的同时镇定不稳定零动态,实现非最小相位高超声速飞行器的纵向轨迹稳定跟踪控制。给出了控制方法的Lyapunov稳定性证明,并进行了恒动压轨迹跟踪和蒙特卡罗仿真。仿真结果表明,动态积分滑模控制方法在摄动条件下保持了较好的跟踪精度和鲁棒性,同时可以有效地镇定系统零动态。
针对高超声速飞行器非最小相位特性带来的零动态不稳定问题,提出基于B-I(Byrnes-Isidori) 标准型的模型变换方法,实现系统内、外动态的解耦。设计了一种动态积分滑模镇定控制方法,构建包含内、外部状态和动态参数变量的增广系统。提出滑模控制参数整定方法实现增广系统的闭环极点配置,使得不同工况和摄动条件下增广系统保持动态稳定,同时外部输出误差平衡点始终为零。所提方法可实现在外部输出精确跟踪的同时镇定不稳定零动态,实现非最小相位高超声速飞行器的纵向轨迹稳定跟踪控制。给出了控制方法的Lyapunov稳定性证明,并进行了恒动压轨迹跟踪和蒙特卡罗仿真。仿真结果表明,动态积分滑模控制方法在摄动条件下保持了较好的跟踪精度和鲁棒性,同时可以有效地镇定系统零动态。
基金项目:
国家自然科学基金资助项目(62003351,62003352);中国民航大学科研启动基金资助项目(2020KYQD11)
国家自然科学基金资助项目(62003351,62003352);中国民航大学科研启动基金资助项目(2020KYQD11)
Dynamic sliding mode stabilization control for nonminimum phase hypersonic vehicle
WANG Yuxiao
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China,wangyx@cauc.edu.cn,yy_zhao@cauc.edu.cn
FENG Hang
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
ZHAO Yuyu
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China,wangyx@cauc.edu.cn,yy_zhao@cauc.edu.cn
SUN Mingwei
College of Artificial Intelligence, Nankai University, Tianjin 300350, China
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China,wangyx@cauc.edu.cn,yy_zhao@cauc.edu.cn
FENG Hang
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
ZHAO Yuyu
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China,wangyx@cauc.edu.cn,yy_zhao@cauc.edu.cn
SUN Mingwei
College of Artificial Intelligence, Nankai University, Tianjin 300350, China
Abstract:
Aiming at the zero dynamic instability caused by nonminimum phase property of hypersonic vehicles, a model transformation method based on the B-I (Byrnes-Isidori) standard form was proposed to achieve decoupling of internal and external dynamics of the system. A dynamic integral sliding mode stabilization control method was proposed, an augmented closed-loop system with internal dynamics, external dynamics and dynamic parameters was formed. A sliding mode parameter tuning method was proposed to make the augmented system remain dynamic stable under different operating conditions and perturbation conditions, and the trimmed point of external output was always zero. The proposed method could accurately track the output trajectory command with zero dynamic stability, and realize the longitudinal trajectory stability tracking control of nonminimum phase hypersonic vehicle. Lyapunov stability analysis was used to prove the stability of the proposed control method, and constant dynamic pressure trajectory tracking and Monte Carlo simulations were carried out. Simulation results show that the dynamic integral sliding mode control method maintains good tracking accuracy and robustness under perturbation conditions, and stabilizes the zero dynamics of the system effectively.
Aiming at the zero dynamic instability caused by nonminimum phase property of hypersonic vehicles, a model transformation method based on the B-I (Byrnes-Isidori) standard form was proposed to achieve decoupling of internal and external dynamics of the system. A dynamic integral sliding mode stabilization control method was proposed, an augmented closed-loop system with internal dynamics, external dynamics and dynamic parameters was formed. A sliding mode parameter tuning method was proposed to make the augmented system remain dynamic stable under different operating conditions and perturbation conditions, and the trimmed point of external output was always zero. The proposed method could accurately track the output trajectory command with zero dynamic stability, and realize the longitudinal trajectory stability tracking control of nonminimum phase hypersonic vehicle. Lyapunov stability analysis was used to prove the stability of the proposed control method, and constant dynamic pressure trajectory tracking and Monte Carlo simulations were carried out. Simulation results show that the dynamic integral sliding mode control method maintains good tracking accuracy and robustness under perturbation conditions, and stabilizes the zero dynamics of the system effectively.
收稿日期:
2022-12-07
2022-12-07