极端低温环境下HTPB推进剂力学性能试验

2025,47(1):23-30
孙海涛
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073
杨庚
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073
袁杰红
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073
申志彬
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073
霍亮
内蒙动力机械研究所, 内蒙古 呼和浩特 010010
摘要:
为研究固体推进剂在极端低温环境下的力学性能和失效机制,采用自研的宽温-围压加载试验系统,开展了三组元端羟基聚丁二烯推进剂在不同温度、围压值以及高应变率条件下的单轴拉伸试验,并对断口形貌进行了电镜扫描观测,分析了温度、拉伸速率及围压值对推进剂力学性能影响规律,探讨了推进剂在不同工况下的损伤破坏机理。结果表明:拉伸速率增大、围压值增大及温度降低时,推进剂脱湿点伸长率降低,脱湿点前移,推进剂内部发生脱湿存在围压和应变率阈值,超过该阈值时,推进剂更易发生脱湿行为。低温状态下,推进剂最大伸长率对高拉伸速率变化更为敏感,其最大抗拉强度和最大伸长率均随着围压值的增大而呈增大趋势,在-55 ℃、10 MPa、4 200 mm/min极端拉伸工况下最大伸长率为28.8%,仍具有良好的力学性能。该推进剂破坏形式随着温度的降低和拉伸速率的提高,表现为脱湿损伤、基体断裂和颗粒开裂三种模式综合作用。
基金项目:
国家自然科学基金资助项目(12372203);湖南省杰出青年基金资助项目(2021JJ10046)

Mechanical properties experiment of HTPB propellant under extreme temperature

SUN Haitao
School of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions, Changsha 410073 , China
YANG Geng
School of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions, Changsha 410073 , China
YUAN Jiehong
School of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions, Changsha 410073 , China
SHEN Zhibin
School of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions, Changsha 410073 , China
HUO Liang
Inner Mongolia Power Machinery Research Institute, Huhhot 010010 , China
Abstract:
In order to study the mechanical properties and failure mechanism of the solid propellant under extreme low temperature environment, the uniaxial tensile test of a three-component butyl hydroxyl propellant was carried out under different temperatures, wide range of superimposed pressure values and high strain rate conditions by adopting the self-developed wide-temperature-superimposed pressure loading test system, and the fracture morphology was observed by electron microscope scanning. The effect of temperature, tensile rate and peripheral pressure value on the mechanical properties of the propellant was analysed, and the damage mechanism of the propellant under different working conditions was discussed. Results show that when the tensile rate increases, the superimposed pressure increases and the temperature decreases, the elongation of the dewetting point of the propellant decreases, the dewetting point moves forward, and dewetting occurs inside the propellant. There are superimposed pressure and strain rate thresholds, above which the propellant is more prone to dewetting behaviour. At low temperature, the maximum elongation of propellant is more sensitive to the change of high tensile rate, and its maximum tensile strength and maximum elongation both tend to increase with the increase of the value of the peripheral pressure, and the maximum elongation is 28.8% under the extreme tensile condition of -55 ℃, 10 MPa, and 4 200 mm/min. The failure mode of the propellant is affected by a combination of dewetting damage, matrix fracture, and particle cracking, as the temperature decreases and the tensile rate increases.
收稿日期:
2024-05-21
     下载PDF全文