NEPE固体推进剂的低频疲劳特性
2025,47(1):31-41
张文沁
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073
张大鹏
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073
雷勇军
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073 ;
火箭军工程大学, 陕西 西安 710025
申志彬
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073
吴凡几
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073
张大鹏
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073
雷勇军
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073 ;
火箭军工程大学, 陕西 西安 710025
申志彬
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073
吴凡几
国防科技大学 空天科学学院, 湖南 长沙 410073 ;
空天任务智能规划与仿真湖南省重点实验室, 湖南 长沙 410073
摘要:
为研究低频疲劳加载下硝酸酯增塑聚醚(nitrate ester plasticized polyether, NEPE)固体推进剂的损伤演化过程,获得疲劳加载历史对NEPE固体推进剂拉伸力学性能的影响规律,基于电子万能试验机开展了NEPE固体推进剂低频疲劳试验和定应变率单轴拉伸试验,并结合疲劳加载后试件的细观形貌图与试验曲线,进一步分析微细观结构损伤对NEPE固体推进剂宏观力学行为的作用机理。结果表明,低频疲劳载荷会使NEPE固体推进剂基体出现微裂纹,使其基体/颗粒界面出现空穴,进而产生不可忽视的应力软化行为与残余应变;疲劳加载过程中及疲劳加载后,NEPE固体推进剂宏观力学性能的衰减均与最大加载应变呈指数函数关系;低频疲劳载荷所造成的部分微观损伤可恢复,其余疲劳损伤能提升分子链取向重排能力,使材料出现疲劳强化现象。
为研究低频疲劳加载下硝酸酯增塑聚醚(nitrate ester plasticized polyether, NEPE)固体推进剂的损伤演化过程,获得疲劳加载历史对NEPE固体推进剂拉伸力学性能的影响规律,基于电子万能试验机开展了NEPE固体推进剂低频疲劳试验和定应变率单轴拉伸试验,并结合疲劳加载后试件的细观形貌图与试验曲线,进一步分析微细观结构损伤对NEPE固体推进剂宏观力学行为的作用机理。结果表明,低频疲劳载荷会使NEPE固体推进剂基体出现微裂纹,使其基体/颗粒界面出现空穴,进而产生不可忽视的应力软化行为与残余应变;疲劳加载过程中及疲劳加载后,NEPE固体推进剂宏观力学性能的衰减均与最大加载应变呈指数函数关系;低频疲劳载荷所造成的部分微观损伤可恢复,其余疲劳损伤能提升分子链取向重排能力,使材料出现疲劳强化现象。
基金项目:
国家自然科学基金资助项目(12372203);湖南省杰出青年基金资助项目(2021JJ10046);国防科技大学自主创新科学基金资助项目(22-ZZCX-077);国防科技大学空天科学学院青年人才自主研究培育资助项目(KY0505072207)
国家自然科学基金资助项目(12372203);湖南省杰出青年基金资助项目(2021JJ10046);国防科技大学自主创新科学基金资助项目(22-ZZCX-077);国防科技大学空天科学学院青年人才自主研究培育资助项目(KY0505072207)
Low-frequency fatigue characteristics of NEPE solid propellant
ZHANG Wenqin
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Mission, Changsha 410073 , China
ZHANG Dapeng
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Mission, Changsha 410073 , China
LEI Yongjun
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Mission, Changsha 410073 , China ;
Rocket Force University of Engineering, Xi′an 710025 , China
SHEN Zhibin
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Mission, Changsha 410073 , China
WU Fanji
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Mission, Changsha 410073 , China
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Mission, Changsha 410073 , China
ZHANG Dapeng
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Mission, Changsha 410073 , China
LEI Yongjun
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Mission, Changsha 410073 , China ;
Rocket Force University of Engineering, Xi′an 710025 , China
SHEN Zhibin
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Mission, Changsha 410073 , China
WU Fanji
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China ;
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Mission, Changsha 410073 , China
Abstract:
To investigate the damage evolution process of low-frequency fatigue-loaded NEPE (nitrate ester plasticized polyether) solid propellant and get the influence law of fatigue loading history on tensile mechanical properties of NEPE solid propellant, the NEPE solid propellant low-frequency fatigue tests and uniaxial tensile tests with constant strain rate were conducted by the electronic universal testing machine. Based on the microscopic morphology and testing curves of test piece after fatigue loading, the influential mechanism of microscopic and mesoscopic damage on the NEPE solid propellant macroscopic mechanical behavior was further analyzed. Results indicate that the NEPE solid propellant matrix microcracks and voids at the matrix/particle interface are induced by low-frequency fatigue loads, leading to nonnegligible stress-softening behavior and residual strain. During and after fatigue loading, the attenuations of macroscopic mechanical properties of NEPE solid propellant are all exponentially related to the maximum loading strain. Part of microscopic damage by low-frequency fatigue load can recover, while the remaining fatigue damage may enhance the molecular chain orientation ability, and thus lead to the fatigue-strengthening phenomenon in materials.
To investigate the damage evolution process of low-frequency fatigue-loaded NEPE (nitrate ester plasticized polyether) solid propellant and get the influence law of fatigue loading history on tensile mechanical properties of NEPE solid propellant, the NEPE solid propellant low-frequency fatigue tests and uniaxial tensile tests with constant strain rate were conducted by the electronic universal testing machine. Based on the microscopic morphology and testing curves of test piece after fatigue loading, the influential mechanism of microscopic and mesoscopic damage on the NEPE solid propellant macroscopic mechanical behavior was further analyzed. Results indicate that the NEPE solid propellant matrix microcracks and voids at the matrix/particle interface are induced by low-frequency fatigue loads, leading to nonnegligible stress-softening behavior and residual strain. During and after fatigue loading, the attenuations of macroscopic mechanical properties of NEPE solid propellant are all exponentially related to the maximum loading strain. Part of microscopic damage by low-frequency fatigue load can recover, while the remaining fatigue damage may enhance the molecular chain orientation ability, and thus lead to the fatigue-strengthening phenomenon in materials.
收稿日期:
2024-04-25
2024-04-25