全自动超声速流动计算架构及实现
2025,47(1):83-93
刘君
大连理工大学 航空航天学院, 辽宁 大连 116024
陈洁
大连理工大学 航空航天学院, 辽宁 大连 116024
卢俊宇
中山大学 航空航天学院, 广东 深圳 510275
汪骥
大连理工大学 船舶工程学院, 辽宁 大连 116024
徐春光
中山大学 航空航天学院, 广东 深圳 510275
大连理工大学 航空航天学院, 辽宁 大连 116024
陈洁
大连理工大学 航空航天学院, 辽宁 大连 116024
卢俊宇
中山大学 航空航天学院, 广东 深圳 510275
汪骥
大连理工大学 船舶工程学院, 辽宁 大连 116024
徐春光
中山大学 航空航天学院, 广东 深圳 510275
摘要:
实现CFD计算流程中网格生成及计算流程的自动化,能显著提高CFD仿真效率,具有重要应用价值。以扎染算法为基础的全自动CFD模拟技术架构,实现输入实体模型后无须几何清理,即可自动生成网格、快速开始无黏超声速流场计算的功能。通过二维数值算例验证了该技术的计算精度和非结构有限体积法相当,但计算效率明显提升;开发出基于手绘模型实时开始计算的Auto-CFD软件,理论上能对二维任意外形进行全自动模拟计算;将该技术从二维空间推广到三维,以激光扫描汽车得到的不规则点云作为外形演示了本技术对复杂外形问题的适应能力。基于扎染算法发展的Auto-CFD技术架构,兼容主流差分格式,具有良好的网格适应性,有望解决现有Auto-CFD软件存在的技术问题。
实现CFD计算流程中网格生成及计算流程的自动化,能显著提高CFD仿真效率,具有重要应用价值。以扎染算法为基础的全自动CFD模拟技术架构,实现输入实体模型后无须几何清理,即可自动生成网格、快速开始无黏超声速流场计算的功能。通过二维数值算例验证了该技术的计算精度和非结构有限体积法相当,但计算效率明显提升;开发出基于手绘模型实时开始计算的Auto-CFD软件,理论上能对二维任意外形进行全自动模拟计算;将该技术从二维空间推广到三维,以激光扫描汽车得到的不规则点云作为外形演示了本技术对复杂外形问题的适应能力。基于扎染算法发展的Auto-CFD技术架构,兼容主流差分格式,具有良好的网格适应性,有望解决现有Auto-CFD软件存在的技术问题。
基金项目:
国家自然科学基金资助项目(11872144)
国家自然科学基金资助项目(11872144)
Automatic computing framework and implementation for supersonic flow
LIU Jun
School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024 , China
CHEN Jie
School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024 , China
LU Junyu
School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 510275 , China
WANG Ji
School of Naval Architecture & Ocean Engineering, Dalian University of Technology, Dalian 116024 , China
XU Chunguang
School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 510275 , China
School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024 , China
CHEN Jie
School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024 , China
LU Junyu
School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 510275 , China
WANG Ji
School of Naval Architecture & Ocean Engineering, Dalian University of Technology, Dalian 116024 , China
XU Chunguang
School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 510275 , China
Abstract:
The process of grid generation and flow field simulation in CFD calculation can be automated to enhance the efficiency of CFD simulation, which has a great potential for applications. An Auto-CFD technology framework based on the tie-dye algorithm which can generate grids automatically and initiate inviscid supersonic flow field calculation quickly without geometry clean-up after inputting solid models. A 2D numerical example verifies that the calculation accuracy of this technology is comparable to that of the unstructured finite volume method, but with a significant improvement in calculation efficiency. An Auto-CFD software that can start the calculation in real time based on hand-drawn models was developed in theory, which can automatically simulate any two-dimensional irregular shape. The Auto-CFD technology was also extended from 2D to 3D space, and the irregular point cloud obtained by laser scanning the car was used as the solid model to demonstrate the adaptability of this technology to complex shape problems. The Auto-CFD technology framework developed based on the tie-dye algorithm is compatible with mainstream difference schemes and has good mesh adaptability, which is expected to solve the technical problems existing in existing Auto-CFD software.
The process of grid generation and flow field simulation in CFD calculation can be automated to enhance the efficiency of CFD simulation, which has a great potential for applications. An Auto-CFD technology framework based on the tie-dye algorithm which can generate grids automatically and initiate inviscid supersonic flow field calculation quickly without geometry clean-up after inputting solid models. A 2D numerical example verifies that the calculation accuracy of this technology is comparable to that of the unstructured finite volume method, but with a significant improvement in calculation efficiency. An Auto-CFD software that can start the calculation in real time based on hand-drawn models was developed in theory, which can automatically simulate any two-dimensional irregular shape. The Auto-CFD technology was also extended from 2D to 3D space, and the irregular point cloud obtained by laser scanning the car was used as the solid model to demonstrate the adaptability of this technology to complex shape problems. The Auto-CFD technology framework developed based on the tie-dye algorithm is compatible with mainstream difference schemes and has good mesh adaptability, which is expected to solve the technical problems existing in existing Auto-CFD software.
收稿日期:
2022-09-23
2022-09-23