中国运载火箭技术研究院 空间物理重点实验室, 北京 100076,wang_liyan12@163.com
檀妹静
中国运载火箭技术研究院 空间物理重点实验室, 北京 100076
聂亮
中国运载火箭技术研究院 空间物理重点实验室, 北京 100076
蒋云淞
中国运载火箭技术研究院 空间物理重点实验室, 北京 100076
袁野
中国运载火箭技术研究院 空间物理重点实验室, 北京 100076
王振峰
中国运载火箭技术研究院 空间物理重点实验室, 北京 100076
为研究不同射流状态对高超声速飞行器气动加热的影响,对高超声速来流条件下方孔和圆孔横向射流模型进行数值模拟,讨论射流压强、射流速度及射流方向对主流流场的影响,得到了不同射流状态下流场结构、壁面温度热流分布及壁面中心线温度热流变化。结果表明:射流在一定程度上能缓解壁面气动加热情况,壁面引射效果更好,壁面引射速度1 m·s-1时壁面热流降低接近三分之二。在高速(Ma>1)射流情况下,适当增大压强和速度,均会使得射流下游的冷却效果加强;在中低速(Ma<0.6)射流情况下,射流基本上不改变主流流场而在边界层内流动,流速越大,冷却范围越大,冷却效果也相对较好。射流方向与主流方向夹角为锐角时,利于射流孔下游降温;夹角为钝角时,利于射流孔上游降温。
国家安全重大基础研究资助项目(613285);中央军委科技委员基础加强类资助项目(0327004)
Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China,wang_liyan12@163.com
TAN Meijing
Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China
NIE Liang
Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China
JIANG Yunsong
Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China
YUAN Ye
Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China
WANG Zhenfeng
Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China
In order to study the impact of different ejecting state on aerodynamic heating of hypersonic aircrafts,the square/circle hole ejecting under hypersonic flow condition was numerically simulated. The impacts of ejecting pressure, ejecting velocity and ejecting direction to the main flow field were discussed and the flow field structure, wall heat flux and center line temperature at different ejecting state were obtained. The results show that gas ejection can relieve the aerodynamic heating situation of wall to some extent. The cooling effect at whole wall ejection is remarkable. And the wall heat flux reduces nearly two-thirds when the ejecting velocity is about 1 m·s-1. Moreover, at high ejecting velocity (Ma>1), the cooling effect is strengthened by increasing the ejecting pressure and velocity appropriately. At low ejecting velocity (Ma<0.6), the ejection flows within the boundary layer, and has a weak influence on the main flow field structure; the greater the ejecting velocity is, the bigger the range of cooling is, and the better the cooling effect is. The cooling effect of downstream is better when the ejecting direction is acute angle, and the cooling effect of upstream is better when the ejecting direction is obtuse angle.