用快速多项式变换(FPT)计算二维离散富里叶变换(DFT)
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Computation of Two Dimensional Discrete Fourier Transforms (DFT) Using Fast Polynomial Transforms (FPT)
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文利用快速多项式变化(FPT)计算N×M型二维DFT(M=2m,N=2m-r+1,1≤r≤m),所需的乘法及加法次数(复乘及复加)分别为Mu=1/2NMlog2M-3/2NM+N2+N(1+log2M-log2N) Ad=NMlog2NM,与通常的以2为基的二维FFT比较,加法次数相同,乘法次数减少约30-40%,从而提高了计算精度。本算法还适用于并行算法。

    Abstract:

    In this paper,a fast algorithm is developed to compute two-dimensional Discrete Fourier Transform (DFT) of an array of NxM complex number points using FPT,where M=2m,N=2m-r+1,1≤r≤m.As compared with the conventional radix-2 two-dimensional Fast Fourier Transforms,this new algorithm requires less number of multiplications (decrease by 30-40%) and same number of additions, so that elevates the computing accuracy. The number of multiplications and additions are respectively Mu=1/2NMlog2M-3/2NM+N2+N(1+log2M-log2N) Ad= NMlog2MN. This algorithm also has the advantage to adopt the parallel algorithm.

    参考文献
    相似文献
    引证文献
引用本文

蒋增荣.用快速多项式变换(FPT)计算二维离散富里叶变换(DFT)[J].国防科技大学学报,1982,(4):71-88.
Jiang Zengrong. Computation of Two Dimensional Discrete Fourier Transforms (DFT) Using Fast Polynomial Transforms (FPT)[J]. Journal of National University of Defense Technology,1982,(4):71-88.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:1981-12-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-08-18
  • 出版日期:
文章二维码