一种针对基因识别的GHMM简化算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

军队基础研究项目(JC-02-03-021)


A Simplified Algorithm to GHMM for Gene Finding
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    广义隐Markov模型是计算机基因识别的一种重要模型,它克服了传统隐Markov模型的状态段长成几何分布的缺陷,更加适合于计算机基因识别。其缺点在于计算量大,需要采用有效的简化算法。利用基因的结构特点,在不附加额外限制条件的情况下,提出了一种新的简化算法,其计算复杂度是序列长度的线性函数。对实际生物序列数据的测试结果表明了此简化算法的有效性。

    Abstract:

    The generalized hidden Markov model (GHMM) is an important model for computational gene finding. Compared with the traditional hidden Markov model (HMM), GHMM needn't the assumption that the length of each state is geometrical distribution, while it is necessary for HMM. This property is appropriate for computational gene finding. The demerit of GHMM is its high computational complexity, which hinders it from being used practically. According to the characteristic of gene's structure, a novel simplified algorithm is proposed without any additional assumptions, and its computational complexity is linear with the length of sequence. The testing result for biological data demonstrates that the simplified algorithm is effective.

    参考文献
    相似文献
    引证文献
引用本文

李冬冬,杜耀华,王正志.一种针对基因识别的GHMM简化算法[J].国防科技大学学报,2004,26(4):103-106.
LI Dongdong, DU Yaohua, WANG Zhengzhi. A Simplified Algorithm to GHMM for Gene Finding[J]. Journal of National University of Defense Technology,2004,26(4):103-106.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2004-03-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-04-27
  • 出版日期:
文章二维码