低信噪比下融合随机共振的运动目标检测算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


An algorithm improving objects detection for low-quality  video using stochastic resonance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高智能视频监控系统中运动目标检测算法在低信噪比条件下的鲁棒性,结合混合高斯背景建模算法和随机共振原理实现一种低信噪比下的运动目标检测算法。算法根据混合高斯背景模型对当前帧生成目标概率灰度图,在本文定义的性能评价函数下,通过向该概率灰度图添加噪声使得评价函数最优化从而达到随机共振,对该随机共振灰度图进行阈值分割得到输出的检测目标。针对昏暗、大雾和红外视频分别进行了实验,证实了本文算法的有效性同时也显示本文算法相对于普通背景差算法性能获得了明显提升。

    Abstract:

    Video object extraction is a key technology in intelligence surveillance. An object detection algorithm for low-quality video based on Gaussian Mix Model and stochastic resonance was proposed. Firstly, the algorithm generated the object probability gray image from the current frame with the Gaussian Mix Model by the mapping function defined. Then, stochastic resonance was applied to the object probability gray image by adding noise until the defined evaluation function achieved the minimum value. After stochastic resonance, an effectively enhanced object probability gray image could be obtained. Hence the binary image including the interested objects is retrieved by segmentation of the enhanced object probability gray image. The experimental results show that the proposed algorithm combining the Gaussian Mix Model and the stochastic resonance achieved satisfactory subjective and objective performance under the worse environment with dark, foggy and infrared imaging while the classic background subtraction method almost could not detect the interested objects.

    参考文献
    相似文献
    引证文献
引用本文

陈明生,秦明新,孙即祥,等.低信噪比下融合随机共振的运动目标检测算法[J].国防科技大学学报,2013,35(1):103-107.
CHEN Mingsheng, QIN Mingxin, SUN Jixiang, et al. An algorithm improving objects detection for low-quality  video using stochastic resonance[J]. Journal of National University of Defense Technology,2013,35(1):103-107.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-03-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-03-13
  • 出版日期:
文章二维码