梯度学习的参数控制帮助线程预取模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

上海市自然科学基金资助项目(15ZR1428600);计算机体系结构国家重点实验室开放资助项目(CARCH201206);上海市浦江人才计划资助项目(16PJ1407600)


Helper thread pre-fetching model based on learning gradients of control parameters
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对于非规则访存的应用程序,当某个应用程序的访存开销大于计算开销时,传统帮助线程的访存开销会高于主线程的计算开销,从而导致帮助线程落后于主线程。于是提出一种改进的基于参数控制的帮助线程预取模型,该模型采用梯度下降算法对控制参数求解最优值,从而有效地控制帮助线程与主线程的访存任务量,使帮助线程领先于主线程。实验结果表明,基于参数选择的线程预取模型能获得1.1~1.5倍的系统性能加速比。

    Abstract:

    To the applications with irregular accessing memory, if the overhead of accessing memory for a given application is much greater than that of computation, it will make the helper thread lag behind the main thread. Hereby, an improved helper thread prefetching model by adding control parameters was proposed. The gradient descent algorithm is one of the most popular machine learning algorithms, which was adopted to determine the optimal control parameters. The amount of the memory access tasks was controlled by the control parameters effectively, which makes the helper thread be finished ahead of the main thread. The experiment results show that the speedup of system performance is achieved by 1.1 times to 1.5 times.

    参考文献
    相似文献
    引证文献
引用本文

裴颂文,张俊格,宁静.梯度学习的参数控制帮助线程预取模型[J].国防科技大学学报,2016,38(5):59-63.
PEI Songwen, ZHANG Junge, NING Jing. Helper thread pre-fetching model based on learning gradients of control parameters[J]. Journal of National University of Defense Technology,2016,38(5):59-63.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-11-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-11-08
  • 出版日期:
文章二维码