用于视频图像帧间运动补偿的深度卷积神经网络
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点基础研究发展计划资助项目(2013CB733100)


Deep convolutional neural network for motion compensated frame interpolation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为探索深度学习理论在视频图像帧间运动补偿问题中的应用,提出一种用于视频图像帧间运动补偿的深度卷积神经网络。该网络由卷积模块和反卷积模块构成,可以处理不同分辨率输入图像并具备保持较完整图像细节的能力。利用具有时序一致性的视频图像序列构造训练样本,采用随机梯度下降法对设计的深度卷积神经网络进行训练。视觉效果和数值评估实验表明,训练得到的网络较传统方法能更有效地进行视频图像帧间运动补偿。

    Abstract:

    In order to explore the application of deep learning theory in the problem of motion compensated frame interpolation, a DCNN (deep convolutional neural network) built with convolutional blocks and deconvolutional blocks was proposed. The proposed DCNN is capable of processing input images with different resolutions and preserving finegrained image details. The temporal coherent image sequences were used to construct the training sample and the stochastic gradient descent method was adopted to train the designed DCNN. Qualitative and quantitative experiments show that the trained DCNN obtains better interpolated images than the traditional approach in two testing images sequences.

    参考文献
    相似文献
    引证文献
引用本文

龙古灿,张小虎,于起峰.用于视频图像帧间运动补偿的深度卷积神经网络[J].国防科技大学学报,2016,38(5):143-148.
LONG Gucan, ZHANG Xiaohu, YU Qifeng. Deep convolutional neural network for motion compensated frame interpolation[J]. Journal of National University of Defense Technology,2016,38(5):143-148.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-04-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-11-08
  • 出版日期:
文章二维码