信息中心网络缓存节点位置选择算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(61572123);国家杰出青年科学基金资助项目(71325002);教育部-中国移动科研基金资助项目(MCM20160201)


Cache location selected algorithm for information-centric networking
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    信息中心网络(Information-Centric Networking, ICN)“泛在缓存”的特性,引发数据副本率过高、缓存空间不能充分利用等问题。为了解决上述问题,分别从用户、服务提供商和网络运营商的角度出发,以最小化网络流量与网络费用开销为优化目标建立两个单目标优化模型,并将二者结合为帕累托模型;基于帕累托求解方法中数学规划法的思想,详细描述缓存节点位置选择算法。仿真结果表明:在流量性价比方面,所提缓存节点选择算法优于ICN的默认缓存机制;在网络费用开销方面,所提算法更适用于只有少数内容较为流行的网络中,而在所有内容都流行的情况下,ICN中默认的“遍地缓存”机制更为适宜。

    Abstract:

    The cache ubiquity feature in ICN (information-centric networking) causes many problems such as higher data duplication rate, underutilization of cache space, etc. To solve such problems, the benefits of multiple network roles were considered. From the views of user-service provider and network operator, two single-objective optimization models were established respectively, aiming at minimizing the network traffic and the network expense, which were merged into the Pareto model. The proposed cache location selected algorithm was described based on the mathematical programming method of Pareto. Simulation results show that the proposed algorithm outperforms the default cache mechanism of ICN in terms of traffic cost-effective. In terms of network expense, the proposed algorithm is more applicable to ICN when there are a few popular contents. However, when all contents are popular, the default mechanism of “cache everywhere” in ICN is more applicable.

    参考文献
    相似文献
    引证文献
引用本文

王兴伟,王子健,李福亮,等.信息中心网络缓存节点位置选择算法[J].国防科技大学学报,2019,41(1):152-160.
WANG Xingwei, WANG Zijian, LI Fuliang, et al. Cache location selected algorithm for information-centric networking[J]. Journal of National University of Defense Technology,2019,41(1):152-160.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-11-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-03-15
  • 出版日期: 2019-02-28
文章二维码