图像超分辨率卷积神经网络加速算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家部委基金资助项目(4010501050401)


Image super resolution convolution neural network acceleration algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现模型的实时和嵌入式运行,提出了一种轻量级的卷积神经网络结构。通过采用较小的滤波器尺寸和引入深度可分离卷积,可大量减少模型参数,提高模型非线性表达能力;在网络末端引入子像素卷积层,直接从原始低分辨率图像学习到高分辨率图像的映射,计算成本为原来的1/k2(k为放大因子)。在Set5数据集上的实验表明,所提模型的速度较经典的图像超分辨率重建算法速度提高了25.8倍,能够在通用GPU上实时运行,峰值信噪比平均提高了0.17 dB,并且参数只有它的35%。

    Abstract:

    In order to realize the real-time and embedded operation of the model, a lightweight convolution neural network structure was proposed. By using a smaller filter size and introducing depthwise separable convolution, a large number of model parameters can be subtracted and the nonlinear capability can be improved. The sub-pixel convolution was introduced at the end of the network, then the mapping was learned directly from the original low-resolution image (without interpolation) to the high-resolution one, the cost is 1/k2 as much as before (k is the magnification factor). Experimental results on Set5 show that the proposed model is more than 25.8 times faster than the classical super resolution reconstruction algorithm and can run in real-time on a common GPU; and the proposed method with only 35% parameters of SRCNN(super resolution convolution neural network), improves the PSNR(peak signal to noise ratio) with value of 0.17 dB.

    参考文献
    相似文献
    引证文献
引用本文

刘超,张晓晖,胡清平.图像超分辨率卷积神经网络加速算法[J].国防科技大学学报,2019,41(2):91-97.
LIU Chao, ZHANG Xiaohui, HU Qingping. Image super resolution convolution neural network acceleration algorithm[J]. Journal of National University of Defense Technology,2019,41(2):91-97.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-12-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-04-24
  • 出版日期: 2019-04-28
文章二维码