面向众核处理器的阴阳K-means算法优化
作者:
作者单位:

(1. 国防科技大学 计算机学院, 湖南 长沙 410073;2. 国防科技大学 并行与分布计算全国重点实验室, 湖南 长沙 410073)

作者简介:

周天阳(1995—),男,湖南湘潭人,硕士研究生,E-mail:zhoutianyang@nudt.edu.cn

通讯作者:

中图分类号:

TP311.1

基金项目:

国家自然科学基金资助项目(62002365)


Optimizing Yinyang K-means algorithm on many-core CPUs
Author:
Affiliation:

(1. College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China;2. National Key Laboratory of Parallel and Distributed Computing, National University of Defense Technology, Changsha 410073, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统阴阳K-means算法处理大规模聚类问题时计算开销十分昂贵。针对典型众核处理器的体系结构特征,提出了一种阴阳K-means算法高效并行加速实现。该实现基于一种新内存数据布局,采用众核处理器中的向量单元来加速阴阳K-means中的距离计算,并面向非一致内存访问(non-unified memory access, NUMA)特性进行了针对性的访存优化。与阴阳K-means算法的开源多线程实现相比,该实现在ARMv8和x86众核平台上分别获得了最高约5.6与8.7的加速比。因此上述优化方法在众核处理器上成功实现了对阴阳K-means算法的加速。

    Abstract:

    Traditional Yinyang K-means algorithm is computationally expensive when dealing with large-scale clustering problems. An efficient parallel acceleration implementation of Yinyang K-means algorithm was proposed on the basis of the architectural characteristics of typical many-core CPUs. This implementation was based on a new memory data layout, used vector units in many-core CPUs to accelerate distance calculation in Yinyang K-means, and targeted memory access optimization for NUMA(non-uniform memory access) characteristics. Compared with the open source multi-threaded version of Yinyang K-means algorithm, this implementation can achieve the speedup of up to 5.6 and 8.7 approximately on ARMv8 and x86 many-core CPUs, respectively. Experiments show that the optimization successfully accelerate Yinyang K-means algorithm in many-core CPUs.

    参考文献
    相似文献
    引证文献
引用本文

周天阳,王庆林,李荣春,等.面向众核处理器的阴阳K-means算法优化[J].国防科技大学学报,2024,46(1):93-102.
ZHOU Tianyang, WANG Qinglin, LI Rongchun, et al. Optimizing Yinyang K-means algorithm on many-core CPUs[J]. Journal of National University of Defense Technology,2024,46(1):93-102.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-28
  • 出版日期: 2024-02-28
文章二维码