改进的快速稀疏贝叶斯学习水声信道估计算法
作者:
作者单位:

1.海军潜艇学院, 山东 青岛 266199 ; 2.崂山实验室, 山东 青岛 266237

作者简介:

贾书阳(1994—),男,山东龙口人,博士研究生,E-mail:18702512077@163.com

通讯作者:

中图分类号:

TN929.3

基金项目:

国家重点研发计划资助项目(2021YFC3100900);青岛海洋科学与技术试点国家实验室问海计划资助项目(2021WHZZB0600);青岛协同创新研究院创新计划资助项目(LYY-2022-05)


Improved fast sparse Bayesian learning algorithm for underwater acoustic channel estimation
Author:
Affiliation:

1.Naval Submarine Academy, Qingdao 266199 , China ; 2.Laoshan Laboratory, Qingdao 266237 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了保证水下设备的长期稳定通信,提出了一种基于改进的快速边缘似然最大化的稀疏贝叶斯学习(sparse Bayesian learning based on improved fast marginal likelihood maximization, IFM-SBL)算法,对水声信道进行低复杂度、高性能的估计。特别是在低信噪比情况下,通过阈值去噪和离散傅里叶变换降噪,可以进一步提升算法的性能。仿真和海试结果表明,所提的IFM-SBL信道估计后的输出误码率与基于期望最大化的稀疏贝叶斯学习(sparse Bayesian learning based on expectation maximization, EM-SBL)算法相似,且验证了算法在低信噪比和快慢时变信道中都具有良好的鲁棒性。在运行速度方面,FM-SBL算法与IFM-SBL算法比EM-SBL算法提高了约90%,大大减少了信道估计时间。

    Abstract:

    In order to guarantee the long-term stable communication of underwater devices, the IFM-SBL(sparse Bayesian learning based on improved fast marginal likelihood maximization) algorithm was proposed to estimate underwater acoustic channels with low complexity and high performance. Especially in the case of low SNR(signal-to-noise ratio), the performance of proposed algorithm can be further improved by threshold denoising and discrete Fourier transform denoising. Simulation and sea trial results show the output bite error rate after channel estimation of IFM-SBL is similar to that of EM-SBL(sparse Bayesian learning based on expectation maximization), and it has good robustness in both low SNR and fast or slow time-varying channels. The running speed of FM-SBL and IFM-SBL algorithm is 90% better than that of EM-SBL algorithm, which greatly reduces the estimation time.

    参考文献
    相似文献
    引证文献
引用本文

贾书阳, 邹司宸, 刘宝衡, 等. 改进的快速稀疏贝叶斯学习水声信道估计算法[J]. 国防科技大学学报, 2025, 47(2): 219-226.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-14
  • 出版日期:
文章二维码