针对运载火箭上升段考虑大风区减载的智能姿态控制方法
作者:
作者单位:

国防科技大学 空天科学学院, 湖南 长沙 410073

作者简介:

周首(1995—),男,北京人,博士研究生,E-mail:zhoushou163@163.com

通讯作者:

中图分类号:

V249.1

基金项目:

国家自然科学基金资助项目(U21B2028)


Intelligent attitude control method of launch vehicle during ascendingphase considering load reduction in high wind zone
Author:
Affiliation:

College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对运载火箭在上升段遭遇大风区的减载需求,提出自适应学习率的智能姿态控制方法。以运载火箭为研究对象,建立了其俯仰平面的动力学模型。基于柔性动作-评价构建了适用于运载火箭上升段飞行控制的深度强化学习框架,设计了一种综合考虑姿态跟踪精度和稳定性以及减载效果的奖励函数。在此基础上,基于步长学习率调度器实现了学习率自适应迭代,以期在快速提升控制器收敛性的基础上找到最优解。并设计了一种早停机制实现了训练过程的自动停止,以提升训练效率。仿真结果表明,所提出的方法在保证姿态跟踪精度和稳定性的前提下能够有效实现运载火箭的减载效果,并且对随机阵风干扰具有较强的鲁棒性和适应能力。

    Abstract:

    To address the aerodynamic load reduction requirement when the launch vehicle flying in high wind zone during the ascending phase, an intelligent attitude control method with adaptive learning rate was proposed. Taking a certain type of launch vehicle as the research object, the dynamic model in the pitch plane was established. A deep reinforcement learning framework suitable for flight control of the launch vehicle during the ascending phase was developed based on soft actor-critic, and a reward function that comprehensively considers attitude tacking accuracy and stability, and load reduction effectiveness was designed. On this basis, an adaptive iteration of learning rate was implemented based on a step-size learning rate scheduler to quickly improve the convergence velocity and find the optimal solution of the controller. Besides, an early stopping mechanism which can automatically end the training process was designed to enhance the training efficiency. Simulations show that the proposed method can effectively achieve load reduction of the launch vehicle while ensuring attitude tracking accuracy and stability. Additionally, it has strong robustness and adaptability to random wind disturbance.

    参考文献
    相似文献
    引证文献
引用本文

周首, 杨豪, 张士峰, 等. 针对运载火箭上升段考虑大风区减载的智能姿态控制方法[J]. 国防科技大学学报, 2025, 47(3): 51-63.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-03
  • 出版日期:
文章二维码