时序演化特征挖掘的特定域社会事件检测方法
作者:
作者单位:

国防科技大学 系统工程学院, 湖南 长沙 410073

作者简介:

赵东旭(1996—),男,黑龙江齐齐哈尔人,硕士研究生,E-mail:dxzhao_nudt@foxmail.com

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金资助项目(62102431);国防科技大学自主科研计划基金资助项目(ZK21-32);信息系统工程重点实验室基金资助项目(6142101220209)


Detecting domain-specific social events via temporal evolution feature mining
Author:
Affiliation:

College of Systems Engineering, National University of Defense Technology, Changsha 410073 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对隐式关联关系挖掘不充分、未考虑时序演化因素等问题,提出时序演化特征挖掘的特定域社会事件检测方法。将数据按时间划分切片,通过考虑不同来源的重复事件记录对检测的影响,构造实体交互图,降低数据库误差影响;改进多关系图卷积网络,依据交互关系更新历史演化序列的图结构信息,通过注意力机制关注重要特征,得到序列单元全局表示,实现隐式关联的充分挖掘;基于循环神经网络提取时序演化特征,得到序列全局表示,实现时序演化因素的挖掘。实验结果表明,该方法能够适用于特定域社会事件检测任务,较现有方法效果更优。

    Abstract:

    In view of the insufficient mining of implicit associative relationships and the problem of neglecting the temporal evolution factor, a domain-specific social event detection method via temporal evolution feature mining was proposed. The data was sliced by time and an entity interaction graph was constructed by considering the impact of duplicate event records from different sources on detection, in order to reduce the influence of database errors. Multi-relational graph convolutional network was improved, and the graph structure information of historical evolution sequence was updated by interaction relationships. Attention mechanism was used to learn core features to obtain global embedding of sequence units. Implicit association was mined sufficiently. Based on recurrent neural network, temporal evolution features were extracted to obtain the global embedding and the temporal evolution factor was mined effectively. Experiment results show that the proposed method can be applied to domain-specific social event detection task, which is better than existing methods.

    参考文献
    相似文献
    引证文献
引用本文

赵东旭, 张鑫, 潘岩, 等. 时序演化特征挖掘的特定域社会事件检测方法[J]. 国防科技大学学报, 2025, 47(5): 186-196.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-08
  • 出版日期:
文章二维码