增强随机集成的混合核K近邻算法的基站网络流量模型
作者:
作者单位:

1.东南大学 网络空间安全学院, 江苏 南京 211189 ; 2.中国联合网络通信有限公司广州市分公司, 广东 广州 510630 ; 3.东南大学 数学学院, 江苏 南京 211189 ; 4.华南理工大学 信息网络工程研究中心, 广东 广州 510641 ; 5.国电南瑞科技股份有限公司, 江苏 南京 211106

作者简介:

孙宁(1971—),男,广东梅州人,高级工程师,博士研究生,硕士生导师,E-mail:gdgzsun@139.com

通讯作者:

中图分类号:

TP18

基金项目:

广州市重点领域研发计划2022年度“新一代信息技术”重大科技专项资助项目(202206070006)


A model for base station network traffic prediction using an enhanced random ensemble-based mixed kernel K nearest neighbor algorithm
Author:
Affiliation:

1.School of Cyber Science and Engineering, Southeast University, Nanjing 211189 , China ;2.China United Network Communications Corporation Guangzhou Branch, Guangzhou 510630 , China ; 3.School of Mathematics, Southeast University, Nanjing 211189 , China ; 4.Information and Network Engineering Research Center, South China University of Technology, Guangzhou 510641 , China ; 5.NARI Technology Co., Ltd., Nanjing 211106 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    面向5G/6G超密集组网的基站网络流量预测需求,提出一种增强随机集成混合核K近邻算法(enhanced random ensemble-based mixed kernel K-nearest neighbor algorithm,ER-MKKNN)。通过融合径向基函数与白噪声核构建混合核函数,突破了单一核函数在非线性关联建模与噪声抑制间的平衡瓶颈。创新性地引入样本-特征双重随机子采样与超参数区间随机化策略,显著提升了高维稀疏场景的泛化稳定性。基于袋外误差反演的动态权重分配机制,提升了算法对流量突变的鲁棒响应能力。配套设计的多级并行化架构,为超密集组网提供了可扩展的预测解决方案。实验表明,ER-MKKNN在均方根误差、平均绝对百分比误差和平均绝对误差三项指标上均优于所对比深度学习模型,为智能网络运维提供了新的技术路径。

    Abstract:

    An ER-MKKNN (enhanced random mixed kernel K nearest neighbors algorithm) was developed to meet the requirements of base station network traffic prediction in ultra-dense 5G/6G environments. A hybrid kernel function was formed by combining a radial basis function kernel with a white-noise kernel, thereby overcoming the trade-off between nonlinear relationship modeling and noise suppression that plagues single-kernel methods. Dual random subsampling of both samples and features, together with a randomized hyperparameter-interval strategy, was employed to bolster generalization stability in high-dimensional, sparse settings. A dynamic weight-allocation mechanism based on inversion of out-of-bag errors was introduced to improve robustness against abrupt traffic fluctuations. Finally, a multi-level parallel architecture was implemented to deliver a scalable prediction framework for ultra-dense network topologies. Experimental evaluations show that ER-MKKNN outperformed deep-learning models in root mean square error, mean absolute percentage error and mean absolute error, respectively, establishing a new technical pathway for intelligent network operations and maintenance.

    参考文献
    相似文献
    引证文献
引用本文

孙宁, 李卓轩, 时欣利, 等. 增强随机集成的混合核K近邻算法的基站网络流量模型[J]. 国防科技大学学报, 2025, 47(6): 24-35.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-02
  • 出版日期:
文章二维码