永磁同步电机典型故障诊断
作者:
作者单位:

1.海军工程大学 电磁能技术全国重点实验室, 湖北 武汉 430033 ; 2.西北核技术研究所, 陕西 西安 710024

作者简介:

黄文(1993—),男,陕西商洛人,助理研究员,博士,E-mail:wen_huaang@163.com;huangwen@nint.ac.cn

通讯作者:

中图分类号:

TM32

基金项目:

国家自然科学基金资助项目(51977215,52207047,52107063,52207048,52201362);电磁能技术全国重点实验室课题资助项目(614221724010101)


Typical fault diagnosis of permanent magnet synchronous motors
Author:
Affiliation:

1.National Key Laboratory of Electromagnetic Energy, Naval University of Engineering, Wuhan 430033 , China ; 2.Northwest Institute of Nuclear Technology, Xi′an 710024 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对表贴式永磁同步电机中常见的定子匝间短路和转子偏心故障,采用占用空间小、可绕制匝数多的柔性印刷电路板制作探测线圈,并将其布置于定子槽口以捕获磁场信息。对于定子匝间短路故障,提出了利用双正交锁相提取故障特征值的匝间短路故障检测方法,能够对短路电阻、短路匝数以及故障位置进行有效区分,且不受电机转速波动的影响。对于转子偏心故障,提出了基于高频注入的探测线圈差分电桥结构偏心故障检测方法,最终可实现2%的偏心度检测。对于复合故障,引入了基于卷积神经网络的故障区分方案,并对比了不同类型学习方法的性能,试验结果表明:复合故障条件下实现了98%的匝间短路正确率评估,且选用AlexNet在训练数据占比为60%时的偏心检测误差仅为5%。

    Abstract:

    For the common stator winding short circuit and rotor eccentricity faults in surface-mounted permanent magnet synchronous motors, a flexible printed circuit board with small footprint and capable of accommodating a large number of windings was used to fabricate the detection coil, which was then arranged in the stator slots to capture magnetic field information. For the stator winding short circuit fault, a winding short circuit detection method using dual orthogonal phase-locked loop to extract fault characteristic values was proposed. This method can effectively distinguish the short circuit resistance, short circuit winding number, and fault location, and was not affected by the motors speed fluctuations. For the rotor eccentricity fault, a differential bridge structure of the detection coil based on high-frequency injection was proposed for eccentricity detection, and ultimately, a 2% eccentricity detection can be achieved. For the composite fault, a fault discrimination scheme based on convolutional neural networks was introduced, and the performance of different learning methods was compared. The experimental results show that under the composite fault condition, a 98% correct rate of winding short circuit assessment is achieved, and the eccentricity detection error using AlexNet with a training data proportion of 60% is only 5%.

    参考文献
    相似文献
    引证文献
引用本文

黄文, 吕珂, 胡靖华, 等. 永磁同步电机典型故障诊断[J]. 国防科技大学学报, 2025, 47(6): 91-105.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-02
  • 出版日期:
文章二维码