多尺度学习的红外无人机目标检测算法
作者:
作者单位:

国防科技大学 智能科学学院, 湖南 长沙 410073

作者简介:

左震(1982—),男,安徽安庆人,副研究员,博士,硕士生导师,E-mail:z.zuo@nudt.edu.cn

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金资助项目(52101377)


Multi-scale learning algorithm for infrared UAV target detection
Author:
Affiliation:

College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机目标体积小、在图像中所占像素少、纹理细节信息弱、算法难以有效提取红外无人机目标特征导致检测精度较低等问题,提出多尺度学习的目标检测算法。通过在模型的颈部网络中构造多尺度特征融合结构,引入多尺度特征学习模块,将深层网络和浅层网络的特征进行级联,获取目标在多个尺度上的特征,丰富特征图的语义信息和特征信息,显著提高了算法对小型无人机目标的检测精度。在训练过程中使用SIoU代替CIoU损失函数,使网络模型在训练过程中损失最小化,提高了回归精度。实验结果表明,与其他红外小目标、主流检测算法相比,所提方法能有效提高无人机目标的检测精度,在实际应用中可以满足探测无人机目标的检测精度需求。

    Abstract:

    The issues of small UAV (unmanned aerial vehicle) target size, limited pixel coverage in images, weak texture detail information, and the difficulty in effectively extracting infrared UAV target features, which lead to low detection accuracy, were addressed by proposing a multi-scale learning-based target detection algorithm. A multi-scale feature fusion structure was constructed in the neck network of the model, and a multi-scale feature learning module was introduced. Features from both deep and shallow networks were cascaded to capture target features at multiple scales, enriching the semantic and feature information of the feature map, which significantly improved the detection accuracy of small UAV targets. During training, SIoU was used in place of CIoU loss, minimizing the network models loss and enhancing the regression accuracy. Experimental results demonstrate that, compared to other infrared small target detection algorithms and mainstream methods, the proposed approach effectively improves the detection accuracy of UAV targets and meet the detection accuracy requirements for UAV target detection in practical applications.

    参考文献
    相似文献
    引证文献
引用本文

左震, 袁书东, 李灿, 等. 多尺度学习的红外无人机目标检测算法[J]. 国防科技大学学报, 2025, 47(6): 224-234.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-02
  • 出版日期:
文章二维码