三维Mesh建筑物立面半监督对比学习语义分割方法
作者:
作者单位:

国防科技大学 电子科学学院, 湖南 长沙 410073

作者简介:

杜春(1983—),男,云南玉溪人,副教授,博士,E-mail:duchun@nudt.edu.cn

通讯作者:

中图分类号:

TP753

基金项目:

国家自然科学基金重点资助项目(U19A2058)


Semi-supervised semantic segmentation method for 3D Mesh building facades based on contrastive learning
Author:
Affiliation:

College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    从三维Mesh数据中分割建筑物立面以识别对象,是三维场景理解的关键,但现有方法多依赖高成本的精细标注数据。针对该问题,提出了一种半监督学习方法,引入一种基于对比学习和一致性正则化的半监督语义分割(semi-supervised semantic segmentation based on contrastive learning and consistency regularization,SS_CC)方法,用于分割三维Mesh数据的建筑物立面。在SS_CC方法中,改进后的对比学习模块利用正负样本之间的类可分性,能够更有效地利用类特征信息;提出的基于特征空间的一致性正则化损失函数,从挖掘全局特征的角度增强了对所提取建筑物立面特征的鉴别力。实验结果表明,所提出的SS_CC方法在F1分数、mIoU指标上优于当前一些主流方法,且在建筑物的墙面和窗户上的分割效果相对更好。

    Abstract:

    Semantic segmentation of building facades from 3D mesh data is essential for scene understanding but often relies on costly fine-grained annotations. In response to this issue, a semi-supervised learning approach was proposed, introducing a semi-supervised semantic segmentation method based on contrastive learning SS_CC(semi-supervised semantic segmentation based on contrastive learning and consistency regularization) to segment building facades in 3D mesh data. In the SS_CC method, the enhanced contrastive learning module exploited the class separability between positive and negative samples to more effectively utilize class-specific feature information. Additionally, the proposed feature-space consistency regularization loss improved the discriminative capability of the extracted building facade features by leveraging global feature representations. Experimental results show that the proposed SS_CC method outperforms some mainstream methods in F1 score and mIoU, and has relatively better segmentation performance on building walls and windows.

    参考文献
    相似文献
    引证文献
引用本文

杜春, 成浩维, 资文杰, 等. 三维Mesh建筑物立面半监督对比学习语义分割方法[J]. 国防科技大学学报, 2025, 47(6): 235-244.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-02
  • 出版日期:
文章二维码