飞行器智能流场建模方法研究进展
作者:
作者单位:

国防科技大学 空天科学学院, 湖南 长沙 410073

作者简介:

张好(2000—),女,甘肃定西人,博士研究生,E-mail:onenut_hao@yeah.net

通讯作者:

中图分类号:

V211.3

基金项目:


Research progress on intelligent flow field modeling method for aircraft
Author:
Affiliation:

College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    智能流场建模方法通过融合深度学习在特征提取与动态响应预测中的优势,以及在多学科设计优化(multidisciplinary design optimization, MDO)架构中的创新潜力,已成为实现复杂流动系统高效建模与高维性能提升的研究热点。本文从数据驱动方法与物理约束方法两方面系统梳理了智能流场建模的研究现状,并指出了发展面临的三大关键挑战:高保真数据获取、复杂边界几何特征表达以及鲁棒物理约束的构建。进一步地,展望了融合气动与多学科耦合效应的联合建模框架,或能通过多尺度物理信息嵌入与自适应优化机制,革新下一代飞行器MDO范式。提供了数据知识与物理机理的深度融合新思路,旨在推动智能流场建模在航空航天等领域的跨学科创新。

    Abstract:

    Intelligent flow field modeling methods, by integrating the strengths of deep learning in feature extraction and dynamic response prediction with architectural innovation potential in MDO (multidisciplinary design optimization), have emerged as research hotspot for achieving efficient modeling of complex flow systems and enhancing high-dimensional performance. The state-of-the-art in intelligent flow field modeling was systematically reviewed from two perspectives: data-driven approaches and physics-constrained methodologies. Three critical challenges, including acquisition of high-fidelity data, representation of complex boundary geometries, and establishment of robust physical constraints, were identified. Furthermore, a joint modeling framework that integrated aerodynamics and multidisciplinary coupling effects was expected to revolutionize the next generation of aircraft MDO paradigm through multi-scale physical information embedding and adaptive optimization mechanisms. A new idea for the deep integration of data knowledge and physical mechanisms was provided, aiming to inspire interdisciplinary innovations for intelligent flow field modeling in aerospace and other fields.

    参考文献
    相似文献
    引证文献
引用本文

张好, 沈洋, 黄伟, 等. 飞行器智能流场建模方法研究进展[J]. 国防科技大学学报, 2026, 48(1): 1-15.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-30
  • 出版日期:
文章二维码