超临界翼型流场预测:Transformer与卷积神经网络的结合
作者:
作者单位:

清华大学 航天航空学院, 北京 100086

作者简介:

贺子舟(2001—),男,陕西西安人,博士研究生,E-mail:hzz23@mails.tsinghua.edu.cn

通讯作者:

中图分类号:

V224

基金项目:

国家自然科学基金资助项目(12372288,U23A2069)


Supercritical airfoil flow field prediction: the integration ofTransformer and convolutional neural network
Author:
Affiliation:

School of Aerospace Engineering, Tsinghua University, Beijing 100086 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决超临界翼型流场快速预测问题,基于当前深度学习流场预测模型的两种主要思路——卷积神经网络和Transformer,提出一种综合结构的深度学习模型,称为TransCNN-FoilNet。该模型能够预测一系列不同厚度的超临界翼型在不同攻角下的流场,相较于基准模型最高可减少79.5%的平均绝对值误差。还针对超临界翼型流场预测模型的训练提出了一种新的组合损失函数,称为加权L1SSIM损失函数。结果表明,该损失函数可以改善对升阻力系数的预测,阻力系数相对误差最多可以减少17.8%。所提出的模型实现了在降低复杂度的同时提升预测准确性和泛化性能,能够为超临界翼型流场的快速可靠预测提供有力支持。

    Abstract:

    To address the challenge of rapid flow field prediction for supercritical airfoils, a hybrid deep learning model, termed TransCNN-FoilNet, based on two main approaches in current deep learning flow field prediction models—convolutional neural networks and Transformers was proposed. The model was capable of predicting the flow fields of supercritical airfoils with varying thicknesses at different angles of attack, achieving up to a 79.5% reduction in the mean absolute error compared to the baseline model. Additionally, a new combined loss function for training the flow field prediction model was introduced, referred to as the weighted L1SSIM loss function. The results demonstrate that this loss function can improve the prediction of lift and drag coefficients, with the relative error in drag coefficient reduced by up to 17.8%. The proposed model achieves improved prediction accuracy and generalization performance while reducing complexity, providing a promising tool for fast and reliable flow field prediction of supercritical airfoils.

    参考文献
    相似文献
    引证文献
引用本文

贺子舟, 唐维劭, 王龑, 等. 超临界翼型流场预测:Transformer与卷积神经网络的结合[J]. 国防科技大学学报, 2026, 48(1): 16-27.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-30
  • 出版日期:
文章二维码