面向飞行器的气动力系数智能预测方法
作者:
作者单位:

1.国防科技大学 高端装备数字化软件湖南省重点实验室, 湖南 长沙 410073 ;2.国防科技大学 并行与分布计算全国重点实验室, 湖南 长沙 410073 ;3.国防科技大学 计算机学院, 湖南 长沙 410073 ;4.中国空气动力研究与发展中心 计算空气动力研究所, 四川 绵阳 621000 ; 5.中山大学 航空航天学院,广东 深圳 518107 ;6.大连理工大学 机械工程学院, 辽宁 大连 116024

作者简介:

肖奇松(2002—),男,湖南衡阳人,博士研究生,E-mail:xiaoqisong@nudt.edu.cn

通讯作者:

中图分类号:

TP18;V211.3

基金项目:

湖南省自然科学基金资助项目(2024JJ6468);国家自然科学基金资助项目(12402349);国防科技大学自主科研基金资助项目(ZK2023-11);国家重点研发计划资助项目(2021YFB0300101)


Aircraft-oriented intelligent prediction method foraerodynamic coefficients
Author:
Affiliation:

1.Laboratory of Digitizing Software for Frontier Equipment, National University of Defense Technology, Changsha 410073 , China ;2.National Key Laboratory of Parallel and Distributed Computing, National University of Defense Technology, Changsha 410073 , China ;3.College of Computer Science and Technology, National University of Defense Technology, Changsha 410073 , China ;4.Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000 , China ;5.School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107 , China ;6.School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    计算机辅助气动设计对飞行器外形优化至关重要,为进一步提升气动特性建模效率,提出了面向飞行器的气动力系数智能预测方法AeroPointNet。该方法以几何数模的三维点云表征为输入,构建了高效提取局部与全局几何特征的神经网络架构。为捕捉流动条件的变化,AeroPointNet将物理信息与几何特征融合,并引入两种加权注意力机制来动态调整权重,有效解决了权重失衡问题。实验结果表明,AeroPointNet实现了较传统数值方法3个数量级以上的气动力系数计算效率提升,升力系数和阻力系数的平均相对误差均保持在5%以下。

    Abstract:

    Computer-aided aerodynamic design is crucial for aircraft geometry optimization. To further improve the efficiency of aerodynamic characteristic modeling, an aircraft-oriented intelligent aerodynamic coefficient prediction method, AeroPointNet, was proposed. A three-dimensional point cloud representation of geometric models was employed as input, and a neural network architecture was constructed to efficiently extract both local and global geometric features. To capture variations in flow conditions, physical information was fused with geometric features, and two weighted attention mechanisms wereintroduced to dynamically adjust the weights, by which the problem of weight imbalance was effectively addressed. Experimental results show that AeroPointNet achieves a computational efficiency improvement of over three orders of magnitude in aerodynamic coefficient prediction compared with traditional numerical methods. The mean relative errors of lift and drag coefficients are kept below 5%.

    参考文献
    相似文献
    引证文献
引用本文

肖奇松, 陈新海, 陈蔚丰, 等. 面向飞行器的气动力系数智能预测方法[J]. 国防科技大学学报, 2026, 48(1): 88-98.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-30
  • 出版日期:
文章二维码