中心约束对比学习的自集成卫星异常检测方法
DOI:
作者:
作者单位:

中国科学院国家空间科学中心

作者简介:

通讯作者:

中图分类号:

V557+.3

基金项目:

中国科学院战略性先导科技专项 科学卫星任务运控技术(XDA15040100)


Center-constrained contrastive learning with self-ensemble decision for satellite anomaly detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    遥测参数是地面运管人员判断卫星在轨状态的重要依据,参数异常检测能有效保证卫星在轨可靠运行。针对现有异常检测算法对遥测参数特征提取缺乏区分度、异常决策信息丢失等问题,提出一种基于中心约束对比的自集成异常检测方法。融合对比损失和中心损失将正常样本映射到紧凑的特征分布,并采用多视角、多层次特征集成的方式实现样本的异常检测,提升了模型对卫星复杂工况的适应性。采用科学卫星真实遥测参数数据和基准数据集进行验证,结果表明所提方法在真实遥测参数上比最优基准方法的F1值提升21.7%,且具有更好的噪声抗干扰性。实验结果验证了方法的可行性,能够为卫星地面运管提供有效的判读支持。

    Abstract:

    Telemetry data is the important basis for ground operators to judge the status of the on-orbit satellites. Anomaly detection can effectively ensure the reliable operation of satellites in orbit. To deal with the problem of the existing telemetry anomaly detection algorithms, such as the poor discrimination capability of the feature, and loss of decision-making information, a self-ensemble anomaly detection method based on center-constrained contrastive learning was proposed. The method mapped the normal samples to a compact feature distribution by combining contrastive loss and center loss, and then a multi-view and multi-level ensembled feature decision method was used to obtain the anomaly score of the sample. The method improves the adaptability of the model to the complex working conditions of the satellite. The proposed method is robust to noise, and achieves 21.7% improvement of F1 score than that of the state of the art method. The results of the experiment demonstrate the feasibility of the method, which can provide effective support for satellite operation.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-28
  • 最后修改日期:2024-11-27
  • 录用日期:2022-10-13
  • 在线发布日期: 2024-10-09
  • 出版日期:
文章二维码