无人机基站三维空间位置部署方法设计与验证
DOI:
作者:
作者单位:

军事科学院

作者简介:

通讯作者:

中图分类号:

TN92

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Design and verification of three-dimensional spatial deployment method for unmanned aerial vehicle base station
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机基站三维空间部署动态性强、时效性高、约束因素多、耦合性强等特点导致的计算量大、仿真周期长等问题,提出利用高效全局优化算法(Efficient Global Optimization, EGO)来确定无人机基站三维空间部署位置。考虑到EGO算法主要通过最优化改善期望(Expectation Improvement, EI)函数来获取新的采样点,提出利用改进的差分进化算法(Differential Evolution Algorithm, DE)来优化EI函数,改进DE算法通过引入亲本选择框架、后代种群生成策略自适应选择框架来提高寻优能力及收敛速度。利用3个典型的工程问题对改进EGO算法的性能进行测试,结果表明改进后的EGO算法在寻优能力、寻优速度以及稳定性方面都有明显提升。在此基础上,给出了利用改进EGO算法进行无人机基站三维空间部署的应用示例。

    Abstract:

    In order to overcome the problems of high computational complexity and long simulation cycle caused by the character-istics of strong dynamics, high timeliness, multiple constraints, and strong coupling during the three-dimensional spatial deployment of Unmanned Aerial Vehicle Base Station (UAV-BS), An efficient global optimization (EGO) was proposed to determine the three-dimensional spatial deployment location of UAV-BS. Considering that the EGO algorithm mainly obtains new sampling points by optimizing the expectation improvement(EI) function, the improved differential evolu-tion(DE) algorithm was proposed to optimize the EI function. The improved DE algorithm improved the optimization ability and convergence speed by adopting the successful parent selecting framework(SPS Framework) and the offspring generation strategy self-adaptive selection framework(SA Framework). Three typical engineering problems were select-ed to test the performance of the improved EGO algorithm. The results show that the optimization ability, optimization speed, and stability of the improved EGO algorithm are significantly improved. On this basis, an application example of using the improved EGO algorithm to deploy a UAV base station in three-dimensional space was given.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-04
  • 最后修改日期:2025-01-13
  • 录用日期:2023-04-24
  • 在线发布日期: 2025-01-14
  • 出版日期:
文章二维码