腐蚀电场对舰船涂层的破损位置检测
DOI:
作者:
作者单位:

海军工程大学 电气工程学院

作者简介:

通讯作者:

中图分类号:

TM15

基金项目:

国家自然科学基金资助项目(41476153)


Coating Damage Detection of Vessels Using Corrosion Electric Field
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    舰船腐蚀电场信号具有频率低,难以消除等特性,是一种线谱特征明显的船舶物理场特征。不同涂层破损区域的舰船具有区分明显的电场分布特性,可以利用腐蚀电场信号实现舰船的涂层破损位置检测。因此提出了一种结合精细复合层次反向波动色散熵(refined composite hierarchical fluctuation revise dispersion entropy, RCHFRDE)和改进哈里斯鹰核极限学习机(improved Harris Hawk Optimization- kernel based extreme learning machine, IHHO-KELM)的检测方法。使用RCHFRDE提取腐蚀电场信号的特征信息,输入IHHO-KELM进行训练检测涂层损伤区域。通过仿真实验和缩比船模实验来验证所提方法的有效性与可靠性。实验结果证明,该方法能有效预测舰船涂层的单个破损区域,仿真数据和测量数据的检测准确率分别达到94.67%和89.00%,在先验环境信息较少的情况下可以作为非接触式检测方法的有效补充。

    Abstract:

    The corrosion electric field is an obvious physical field feature of vessels due to its special characteristics of low frequency, obvious line spectrum features and cannot be eliminated. There are apparent distribution characteristics corresponding to different coating damage regions of a vessel, which are adequate for determining the possible damaged coating region. Therefore, a novel method combining Refined Composite Hierarchical Fluctuation Revise Dispersion Entropy (RCHFRDE) and improved Harris Hawk Optimization-kernel based extreme learning machine (IHHO-KELM) was proposed. We proposed RCHFRDE to extract the feature of electric field signatures. The feature vectors were input into the IHHO-KELM classifier to detect the damage region. The numerical and physical scale experiments were conducted to validate the feasibility and reliability of the proposed method. This damaged region was efficiently predicted, achieving satisfactory accuracy of 94.67% and 89.00% in numerical and measurement data respectively, which provided a complement for non-contact detection methods, especially with less prior environment information.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-08
  • 最后修改日期:2025-01-12
  • 录用日期:2023-02-15
  • 在线发布日期: 2025-02-20
  • 出版日期:
文章二维码