环境风利用的浮空器区域驻留深度强化学习控制方法
DOI:
作者:
作者单位:

国防科技大学空天科学学院

作者简介:

通讯作者:

中图分类号:

V274

基金项目:

国家自然科学基金资助项目(61903369,52272445),湖南省杰青资助项目(2023JJ10056)


Station keeping control method based on deep reinforcement learning for aerostat using ambient wind
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对平流层浮空器在动态风场中的区域驻留问题,面向不同的控制通道,基于深度强化学习D3QN算法设计了环境风利用的浮空器区域驻留控制器,研究了不同的奖励函数对区域驻留控制器性能的影响。在以区域驻留时长为三日、区域驻留半径为50 km的任务约束下,进行了区域驻留控制仿真。结果表明:与采用DDQN的方法设计的区域驻留控制器相比,采用D3QN方法设计的控制器的性能显著提高,仅依靠高度调节控制轨迹的情况下,平均区域驻留半径可以达到25.26 km、驻留时间比为96%,在水平方向辅助动力推进的情况下,平均区域驻留半径可显著减小、驻留时间比可显著提高。同时,验证了基于深度强化学习设计的区域驻留控制器具有较强的鲁棒性,可通过不同的奖励函数设计控制器,满足不同的区域驻留任务需求。

    Abstract:

    Aiming at the station keeping control problem of Stratospheric aerostat in dynamic wind field, a station keeping controller designed based on deep reinforcement learning D3QN algorithm for different control channels of aerostat operated with ambient wind, studied the impact of different reward functions on the performance of regional resident controllers. Station keeping control simulation was carried out under the task constraint of a station keeping duration of three days and a station keeping radius of 50 km. Results show that: compared with the station keeping controller designed by DDQN method, the performance of the controller designed by D3QN method is significantly improved. When the control trajectory of aerosat is only adjusted by altitude, the average station keeping radius can reach 25.26 km, and the station keeping ratio is 96%. With the aid of horizontal propulsion, the average station keeping radius can be significantly reduced and the station keeping time ratio can be significantly increased. At the same time, the strong robustness of the station keeping controller based on deep reinforcement learning was verified, and the controller can be designed with different reward functions to meet the requirements of different station keeping tasks.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-03
  • 最后修改日期:2025-01-11
  • 录用日期:2023-04-20
  • 在线发布日期: 2025-01-14
  • 出版日期:
文章二维码