利用多层次特征融合网络的图像异常检测算法
DOI:
作者:
作者单位:

1.安徽大学电子信息工程学院;2.安徽大学互联网学院

作者简介:

通讯作者:

中图分类号:

TN911.73; TP301.6

基金项目:

国家自然科学基金(61772032);安徽省重点研究与开发计划项目(202004a07020050、2022k07020006);安徽省高校自然科学研究重大项目(KJ2021ZD0004)


Image anomaly detection algorithm using multi-level feature fusion network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异常检测任务转化为监督学习任务;构建了多层次特征融合网络,将神经网络中不同层次特征进行融合,丰富了特征中的低层纹理信息和高层语义信息,使得用于异常检测的特征更具区分性;训练时,设计了分数约束损失和一致性约束损失,并结合特征约束损失对整个网络模型进行训练。实验结果表明,MVTec数据集上图像级检测平均接收机工作特性曲线下面积(Area Under the Receiver Operating Characteristic, AUROC)值为98.7%,像素级定位平均AUROC值为97.9%,平均每区域重叠率值为94.2%,均高于现有的异常检测算法。

    Abstract:

    Image anomaly detection aims to identify and locate the abnormal region in an image. To address the issue on the insufficient utilization of different-level feature information in the existing methods, an image anomaly detection method based on multi-level feature fusion network was put forward. By using the pseudo anomaly data generation algorithm incorporated with the anomaly prior knowledge, the anomaly data of the training set were augmented, and then the anomaly detection task was transformed into a supervised learning task. A multi-level feature fusion network was constructed to enriches the low-level texture information and high-level semantic information of features by fusing the different levels of features in the neural network, which could make the features used for anomaly detection more discriminative. In the training phase, the score constraint loss and the consistency constraint loss were designed and combined with the feature constraint loss to train the whole network model. Experimental results on the MVTec dataset showed that the proposed model could achieve 98.7% AUROC (Area Under the Receiver Operating Characteristic) in the detection task, 97.9% AUROC in the pixel-wise localization task and 94.2% Per-Region-Overlap in the localization task, which outperformed several existing anomaly detection approaches.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-08
  • 最后修改日期:2025-01-14
  • 录用日期:2023-05-16
  • 在线发布日期: 2025-01-16
  • 出版日期:
文章二维码