改进的快速稀疏贝叶斯学习水声信道估计算法
DOI:
作者:
作者单位:

海军潜艇学院

作者简介:

通讯作者:

中图分类号:

TN929.3

基金项目:

国家重点研发计划(2021YFC3100900),青岛海洋科学与技术试点国家实验室问海计划(2021WHZZB0600),青岛协同创新研究院创新计划(LYY-2022-05)


Improved Fast Sparse Bayesian Learning Underwater Acoustic Channel Estimation Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了保证水下设备的长期稳定通信,提出了一种基于改进的快速边缘似然最大化(IFM-SBL)的稀疏贝叶斯学习算法,对水声信道进行低复杂度、高性能的估计。特别是在低信噪比情况下,通过阈值去噪和DFT变换降噪,可以进一步提升算法的性能。仿真和海试结果表明,所提的IFM-SBL信道估计后的输出误码率与EM-SBL相似,且验证了算法在低信噪比和快慢时变信道中都具有良好的鲁棒性。在运行速度方面,FM-SBL算法与IFM-SBL算法比EM-SBL算法提高了约90%,大大减少了信道估计时间。

    Abstract:

    In order to guarantee the long-term stable communication of underwater devices, the improved sparse Bayesian learning algorithm based on Fast Marginal Likelihood Maximization (IFM-SBL) was proposed to estimate underwater acoustic channels with low complexity and high performance. Especially in the case of low signal-to-noise ratio (SNR), the performance of proposed algorithm can be further improved by threshold denoising and DFT transform denoising. Simulation and sea trial results show the output bite error rate (oBER) after channel estimation of FM-SBL is similar to that of EM-SBL, and it has good robustness in both low SNR and fast or slow time-varying channels. The running speed of FM-SBL and IFM-SBLalgorithm is 90% better than that of EM-SBL algorithm, which greatly reduces the estimation time.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-15
  • 最后修改日期:2025-01-10
  • 录用日期:2023-04-19
  • 在线发布日期: 2025-01-14
  • 出版日期:
文章二维码