无人机非线性状态估计:扩展精确高斯变分推理学习方法
作者:
作者单位:

南京航空航天大学

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Nonlinear state estimation for unmanned aerial vehicles: an ex-tended exactly Gaussian variational inference learning method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在对时变非线性系统进行状态估计以及参数学习时估计误差大、抗干扰能力差等问题,提出一种面向非线性系统的精确稀疏高斯变分推理的批量状态估计与参数学习方法。基于高斯变分推理提出损失函数,状态估计问题转化为对真实后验近似问题,并引入需要学习的参数。对状态概率分布的参数使用高斯—牛顿式优化器的方法进行迭代更新,利用Stein引理、协方差矩阵的稀疏性及高斯容积方法得到完整的状态估计迭代方案。使用期望最大化学习测量模型的噪声参数,同时引入逆Wishart先验减少测量噪声和离群值对参数学习以及状态估计结果的影响。通过对无人机仿真模型进行模拟实验,不加入无人机运动以及测量噪声的真实值的情况下,对无人机轨迹能够进行精确的估计,且有效抑制测量噪声和测量离群值对轨迹估计精度带来的影响。

    Abstract:

    Aiming at the problems of large estimation error and poor anti-interference ability in state estimation and parameter learning of time-varying nonlinear systems, a batch state estimation and parameter learning method for accurate sparse Gaussian variational inference for nonlinear systems was proposed. A loss function was proposed based on Gaussian variational reasoning, and the state estimation problem was transformed into an approximation problem to the true posterior, and parameters that need to be learned were introduced. The parameters of the state probability distribution were iteratively updated using the Gauss-Newton op-timizer method, and a complete state estimation iterative scheme was obtained by using Stein"s lemma, the sparsity of the covari-ance matrix and the Gaussian volume method. The noise parameters of the measurement model were learned through expectation maximization, and the inverse Wishart prior was introduced to reduce the influence of measurement noise and outliers on parame-ter learning and state estimation results. The simulation experiment was carried out on the UAV simulation model, and the UAV trajectory can be accurately estimated without adding the UAV movement and the real value of the measurement noise, and the impact of measurement noise and measurement outliers on trajectory estimation accuracy is effectively suppressed.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-27
  • 最后修改日期:2025-05-11
  • 录用日期:2023-12-25
  • 在线发布日期: 2025-04-03
  • 出版日期:
文章二维码