自适应交叉融合局部特征的空间目标小样本识别方法
DOI:
作者:
作者单位:

国防科技大学电子科学学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Few-shot Space Target Recognition Method Based on Adaptive Cross Fusion of Local Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在低频次观测的空间目标的小样本识别场景中,针对空间目标在不同姿态下图像表征变化剧烈导致的辨识性特征提取难、图像间特征关联难的问题,提出了一种自适应交叉融合局部特征的空间目标小样本识别方法。在现有小样本学习框架上,引入基于自注意力和互注意力的特征交叉融合模块,自适应地学习局部特征之间的相关关系,提高不同姿态下特征提取的判别性和鲁棒性,有效挖掘支持集和查询集之间的相似性,提升存在表征差异条件下的特征关联准确性。同时,在损失函数中引入基于邻域密度的样本标签权重,以解决空间目标数据集中姿态不均衡导致的网络模型学习偏差问题。通过在不同数据集上的验证,证明提出的方法具有更高的识别精度。

    Abstract:

    In the few-shot recognition scenario of space targets observed at low frequency, the drastic changes in the image representation of space targets in different poses pose challenges to the extraction of discriminative features and the correlation of features between images. To address these issues, the few-shot space target recognition method based on adaptive cross fusion of local features was proposed. Based on the existing few-shot learning framework, the feature cross fusion module based on self-attention and cross-attention is used to adaptively learn the correlation between local features, improve the discriminant and robustness of feature in different poses, effectively explore the similarity between the support set and the query set, and improve the accuracy of feature association with representation differences. Meanwhile, the sample label weight based on neighborhood density is employed into the loss function to solve the learning bias problem of the network model caused by unbalanced space target datasets. Through the verification on different datasets, the proposed method is proved to achieve higher recognition accuracy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-28
  • 最后修改日期:2025-03-28
  • 录用日期:2023-08-16
  • 在线发布日期: 2025-04-10
  • 出版日期:
文章二维码