融合选择性聚类集成的深度聚类算法
DOI:
作者:
作者单位:

国防科技大学 教研保障中心

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家部委基金资助项目(145BZB210055287X)


Deep clustering algorithm with fusion selective clustering ensemble
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了使深度聚类算法面对不同类型复杂数据时,能取得鲁棒性良好的聚类结果,将选择性集成策略与深度聚类算法相结合,提出了一种融合选择性聚类集成的深度聚类算法,有效改善了深度聚类算法的鲁棒性和聚类性能。该算法利用不同初始化参数的自编码深度聚类算法生成多个不同的基聚类结果,构建基聚类的集成质量和多样性评估度量,选出一定数目质量更高、多样性丰富的基聚类作为聚类集成候选,在聚类集成策略中考虑簇的可靠性来构建加权图划分共识函数。实验结果表明,融合了选择性聚类集成的深度聚类算法的鲁棒性得到了提高,并且在多个不同类型数据上,相比较许多现有聚类集成算法能获得聚类效果更好的结果。

    Abstract:

    In order to make the deep clustering algorithm achieve robust clustering results for different types of complex data, the strategy of selective ensemble was integrated with deep clustering to propose a deep clustering algorithm with fusion selective clustering ensemble. It effectively improved the robustness and clustering performance of deep clustering algorithm. The algorithm utilizes an autoencoder-based deep clustering approach with different initialization parameters to generate multiple distinct base clustering results. And it constructed ensemble quality and diversity evaluation metrics of base clusterings. A certain number of base clusterings with higher quality and rich diversity were selected as clustering ensemble candidates. The reliability of the cluster was considered in the clustering ensemble strategy to construct the weighted graph partition consensus function. Experiment results demonstrate that the robustness of deep clustering with fusion selective clustering ensemble has been enhanced. Comparing with many existing clustering ensemble methods, it could obtain better clustering results for multiple different types of data.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-13
  • 最后修改日期:2024-09-20
  • 录用日期:2023-10-27
  • 在线发布日期: 2024-10-08
  • 出版日期:
文章二维码