基于汤普森采样的雷达频率捷变在线抗干扰策略研究
DOI:
作者:
作者单位:

1.安徽大学;2.中山大学电子与通信学院;3.军事科学院国防科技创新研究院;4.电子信息系统复杂电磁环境效应国家重点实验室

作者简介:

通讯作者:

中图分类号:

TN95

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on online anti-interference strategy for radar frequency agility based on Thompson Sampling
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在有源干扰动态对抗背景下,基于在线学习理论中多臂赌博机模型,将雷达和干扰机工作频率作为对抗动作空间建模,通过对干扰环境状态不确定性进行多轮脉冲波形发射探索,搭建基于卷积神经网络的频率通道干扰识别器以得到频率通道干扰信念状态后验概率估计,利用汤普森采样求解算法高效求解多臂赌博机模型,实现探索与利用之间的平衡。仿真结果表明,相比较于频率随机捷变及深度强化学习策略求解算法,该方法对抗策略收敛性能更高,可适应动态快变干扰环境,充分发挥雷达波形发射主动方对抗优势。

    Abstract:

    In the context of dynamic countermeasures between radar and active jammer, this paper models the working frequencies of radar and adversarial jammer as the combat action space based on the multi-arm bandit (MAB) model in online learning theory. By exploring the uncertainty of the jamming environment state through multiple-round pulses transmission, a frequency channel jamming recognizer based on a convolutional neural network is constructed to obtain the posterior probability estimation of the belief state of each frequency channel. The Thompson sampling algorithm is used to efficiently solve the built MAB model, achieving a balance between exploration and exploitation. Simulation results show that compared with random frequency agility and deep reinforcement learning algorithms, the method has higher convergence performance and is more adaptable to dynamic fast-changing jamming environments, which can give full potential to the antagonism advantage of radar active waveform transmission.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-16
  • 最后修改日期:2024-01-04
  • 录用日期:2024-01-05
  • 在线发布日期:
  • 出版日期:
文章二维码