面向多视图异构图的分层投影嵌入方法
DOI:
作者:
作者单位:

1.浙大城市学院;2.浙江大学;3.浙江省平安建设大数据重点实验室

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:


Multi-view heterogeneous graph embedding method with hierarchical projection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于分层投影网络的自监督嵌入方法多视图异构投影网络(Multi-view Heterogeneous Graph Projection Network, MeghenNet)以学习多视图低维节点表征,其中多视图异构图被定义为明确允许模型同时从多数据源中采集信息建模异构图。MeghenNet采用分层注意力映射机制,其跨关联投影模块用于提取单视图中的语义信息,跨视图模块用于聚合多个视图中的上下文信息。计算每个视图嵌入与全局嵌入之间的互信息损失函数以确保视图之间的信息一致性。在多个真实数据集上的实验表明,所提出算法在处理多视图异构图嵌入问题时明显优于基准算法。

    Abstract:

    A self-supervised graph embedding approach based on hierarchical projection network called Multi-view heterogeneous graph projection network(MeghenNet) was introduced to learn low-dimensional representations from multiple views, and the concept of multiple-view heterogeneous graphs was formalized for modeling heterogeneous graphs from various sources simultaneously. A hierarchical attention projection that involves a cross-relation projection to extract semantics information within each view was employed, followed by a cross-view projection to aggregate contextual information from other views. The mutual information between the view-specific embeddings and the corresponding high-level summary was computed to ensure the information consistency across views. Experimental results on several real-world datasets demonstrate that the proposed method outperforms state-of-the-art approaches when handling multi-view heterogeneous graphs.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-03
  • 最后修改日期:2025-03-28
  • 录用日期:2024-05-20
  • 在线发布日期: 2025-04-03
  • 出版日期:
文章二维码