面向缺失多元时间序列的图神经网络异常检测算法
作者:
作者单位:

1.浙江大学计算机科学与技术学院;2.浙江大学软件学院;3.浙江省平安建设大数据重点实验室

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金项目(U20B2066)


Anomaly detection based on graph neural network for multivariate time series with missing data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对真实物联网环境中的缺失多元时间序列异常检测难题,提出一种融合缺失信息图嵌入的多元时间序列异常检测算法,基于预插值与异常检测任务融合的联合学习框架,设计基于时序高斯核函数的GNN预插值模块,实现了预插值与异常检测任务的共同优化;提出时间序列数据缺失信息嵌入的图结构学习方法,采用图注意力机制融合缺失信息掩蔽矩阵和时空特征向量,有效建模多元时间序列缺失数据分布的潜在联系。在真实物联网传感器数据集上验证了提出算法的性能,实验结果表明,该方法在缺失多元时间序列异常检测任务上显著优于主流两阶段方法,预插值模块对比实验部分充分证明了基于高斯核函数的GNN预插值层的有效性。

    Abstract:

    Addressing the issue of anomaly detection on missing multivariate time series data in real IoT(Internet of things) environments, a novel method on multivariate time series anomaly detection algorithm intergrated with graph embedding of missing information was proposed. Using a joint learning framework of pre-interpolation and anomaly detection task fusion, a GNN(graph neural network) pre-interpolation module based on time series Gaussian kernel function was designed to realize the joint optimization of pre-interpolation and anomaly detection task. A graph structure learning method for embedding missing information in time series data was proposed, using graph attention mechanism to fuse missing information masking matrix and spatiotemporal feature vectors, effectively modeling the potential connections of missing data distribution in multivariate time series. The performance of the algorithm was verified on real IoT sensor datasets. Experimental results prove that the proposed method significantly outperform the mainstream two-stage methods on the task of missing multivariate time series anomaly detection. The comparative experiment of the pre-interpolation module fully prove the effectiveness of the GNN pre-interpolation layer based on the Gaussian kernel function.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-03
  • 最后修改日期:2025-04-25
  • 录用日期:2024-04-02
  • 在线发布日期: 2025-05-26
  • 出版日期:
文章二维码