面向柔性作业车间调度问题的课程强化学习算法
DOI:
作者:
作者单位:

1.中国地质大学(武汉);2.聊城大学;3.华中科技大学

作者简介:

通讯作者:

中图分类号:

TH165

基金项目:

国家自然科学基金资助项目(52175490,51805495, 52175490);湖北省重点研发计划项目(2022BAD121)


Curriculum reinforcement learning algorithm for flexible job shop scheduling problems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对深度强化学习在柔性作业车间调度问题上的泛化能力不足的问题,提出一种结合课程学习和深度强化学习的方法。通过动态调整训练实例难度,重点增强最难实例的训练,以适应不同数据分布,避免学习过程中的遗忘问题。仿真测试结果表明,算法在未经训练的大规模问题和基准数据集上保持了不错的性能。在两种人造分布的4个未训练大规模问题上取得了更好的性能表现。相较于精确方法和元启发式方法,对于计算量较大的问题实例,能快速的获得质量不错的解。同时算法可以适应不同的数据分布的柔性作业车间调度问题,具有较快收敛速度和较好泛化能力。

    Abstract:

    To address the issue of the lack of generalization capability of deep reinforcement learning in flexible job shop scheduling problems, a method combining curriculum learning and deep reinforcement learning was proposed. The training instance difficulty was dynamically adjusted, with an emphasis on enhancing the training of the most difficult instances, to adapt to different data distributions and avoid the forgetting problem during the learning process. Simulation test results demonstrated that the algorithm maintained decent performance on large-scale untrained problems and benchmark datasets. It achieved better performance on four large-scale untrained problems with two artificial distributions. Compared to exact methods and metaheuristic methods, for problem instances with larger computational complexity, it could rapidly obtain solutions of decent quality. Moreover, the algorithm could adapt to flexible job shop scheduling problems with different data distributions, exhibiting a relatively fast convergence speed and good generalization capability.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-04
  • 最后修改日期:2025-01-09
  • 录用日期:2024-07-09
  • 在线发布日期: 2025-01-16
  • 出版日期:
文章二维码