改进协同演化算法求解高维多目标云工作流调度问题
DOI:
作者:
作者单位:

1.中国地质大学(武汉);2.华中科技大学

作者简介:

通讯作者:

中图分类号:

TP 18

基金项目:

国家自然科学基金 (51825502 ,51905198 ,52175490) 资助


Improved Co-Evolutionary Algorithm for Solving Many-Objective Cloud Workflow Scheduling Problem
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    云工作流是大规模复杂计算任务的重要组织模式之一。近年来,随着计算任务的规模和复杂度增加,对计算资源的需求也呈现爆炸性增长趋势。云计算汇聚海量计算资源并以虚拟机的形式按需提供计算服务,无疑是工作流潜在的理想运行环境。云工作流调度致力于为工作流中不同计算任务分配合适的计算资源,以达到期望的调度效果或目标。云工作流调度目标通常涉及时间、费用、可靠性、资源利用率、以及负载均衡等众多方面。然而,目前主流优化方法通常将云工作流调度建模为单目标或者不超过三个目标的多目标优化问题,它们难以求解考虑四个及以上目标的高维多目标云工作流调度问题。本文将云工作流调度直接建模为高维多目标优化问题,并针对该问题提出一种双阶段改进协同演化算法,利用双阶段策略和不同的指标特性有效平衡算法的收敛性和多样性,以期为工作流调度提供更加丰富的决策信息。相关实验表明,所提方法相比现有算法在大多数情况下都可找到更好的调度方案。

    Abstract:

    Cloud workflow is one of the most significant patterns, widely applied in tackling with the large-scale complicated computing tasks. In recent years, with the ever-growing scale and complexity of computing tasks, the demand for computing resources has getting higher in a corresponding explosive ascending trend. Cloud computing converges massive computing resources, providing users with on-demand computing services in the form of virtual machines. It undoubtedly serves as a potential ideal runtime environment for workflows. Moreover, Cloud workflow scheduling is devoted to allocating reasonable resources for different workflow tasks to meet the expected scheduling effects and targets. In general, the cloud workflow scheduling objectives involve time, cost, reliability, resource utilization, load balancing and other aspects. However, the current mainstream optimizations, up to now, typically attempt to formulate the cloud workflow scheduling problem as a single objective or multi-objective optimization problem at most three objectives. Whereas, these strategies might be less feasible to address many-objective cloud workflow scheduling problem with more than four objectives. Thus, we directly model cloud workflow scheduling into a many-objective problem, and then introduce a Dual-Stage Improved Co-Evolutionary Algorithm which aims to effectively balance the convergence and diversity, using a dual-stage strategy and various indicator characteristics to provide more affluent decision information for workflow scheduling. Experiments reveal that the proposed algorithm apparently outperforms the existing algorithms, which can find a better scheduling solution in most cases.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-05
  • 最后修改日期:2025-03-03
  • 录用日期:2024-07-12
  • 在线发布日期: 2025-01-14
  • 出版日期:
文章二维码