基于强化学习与遗传算法的机器人并行拆解序列规划方法
DOI:
作者:
作者单位:

1.武汉理工大学机电工程学院;2.中国地质大学(武汉)计算机学院;3.湖北汽车工业学院经济管理学院;4.华中科技大学机械科学与工程学院

作者简介:

通讯作者:

中图分类号:

TP18;TP301.6

基金项目:

国家自然科学基金资助项目(52305552);湖北省自然科学基金资助项目(2023AFB138);武汉市知识创新专项曙光计划资助项目(2023020201020322);中央高校基本科研业务费专项资金资助项目(WUT233104001);武汉理工大学自主创新研究基金资助项目(104972024KFYjc0040)


Robotic Parallel Disassembly Sequence Planning Method Based on Reinforcement Learning and Genetic Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在拆解序列规划问题中,为了提高拆解效率、降低拆解能耗,引入了机器人并行拆解模式,构建了机器人并行拆解序列规划模型,并设计了基于强化学习的遗传算法。为了验证模型的正确性通,构造了混合整数线性规划模型。在算法中,构造了基于目标导向的编解码策略,以提高初始解的质量;采用Q学习来选择算法迭代过程中的最佳交叉策略和变异策略,以增强算法的自适应能力。在一个34项任务的发动机拆解案例中,通过与四种经典多目标算法对比,验证了所提算法的优越性;分析所得拆解方案,结果表明机器人并行拆解模式可以有效缩短完工时间,并降低拆解能耗。

    Abstract:

    To improve the disassembly efficiency and reduce disassembly energy consumption, the robotic parallel disassembly mode was introduced in the disassembly sequence planning problem, a robotic parallel disassembly sequence planning model was constructed, and a genetic algorithm based on reinforcement learning was designed. To verify the correctness of the model, a mixed integer linear programming model was constructed. In the algorithm, a goal-oriented encoding and decoding strategy was constructed to improve the quality of the initial solution. Q learning was used to select the best crossover and mutation strategies in the iteration process to enhance the algorithm's adaptability. Finally, in an engine disassembly case with 34 tasks, the superiority of the proposed algorithm was verified by comparing with four classic multi-objective algorithms. The analysis of the disassembly schemes shows that the robotic parallel disassembly mode can effectively shorten the completion time and reduce disassembly energy consumption.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-31
  • 最后修改日期:2025-02-20
  • 录用日期:2024-08-29
  • 在线发布日期: 2025-02-20
  • 出版日期:
文章二维码