基于多源信号视觉特征的胶囊图网络电机故障诊断
DOI:
作者:
作者单位:

1.国防科技大学;2.湖南大学

作者简介:

通讯作者:

中图分类号:

TH133

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Motor Fault Diagnosis Based on Capsule Graph Network with Visual Features of Multi-source Signals
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统电机故障诊断方法依赖专业知识和经验、且在处理复杂数据时精度不高的问题,提出了结合彩色图像融合的对称点模式(Symmetric Dot Pattern, 简称SDP)与多通道融合残差图胶囊网络(Multichannel Residual Fusion Graph Capsule Network, 简称MCFRes-CapsGNN)的电机故障诊断方法。首先,通过对称极坐标变换技术构建雪花图;并结合彩色多通道融合技术整合多传感器信号,生成彩色融合图像,以优化信号特征的视觉表征;随后,利用超像素分割技术将图像划分为超像素块,并依据其纹理、颜色和距离特征构建图结构数据;最后,使用MCFRes-CapsGNN模型对图结构数据进行处理,通过构建胶囊提取图数据特征,有效捕捉数据中的层次结构和复杂空间关系,增强特征学习能力。实验结果表明,所提方法在常规故障类型的诊断上准确率达到98.12%,优于其他智能故障诊断算法。

    Abstract:

    To address the limitations of traditional motor fault diagnosis methods, which rely on specialized knowledge and experience and exhibit low accuracy in handling complex data, a motor fault diagnosis method that combines the Symmetric Dot Pattern (SDP) with the Multichannel Residual Fusion Graph Capsule Network (MCFRes-CapsGNN) was proposed. Snowflake diagrams were constructed using symmetric polar coordinate transformation techniques, and multi-sensor signals were fused through color multi-channel fusion technology to generate color fused images, optimizing the visual representation of signal features. Superpixel segmentation was applied to divide the images into superpixel blocks, and graph-structured data was constructed based on their texture, color, and distance features. The MCFRes-CapsGNN model was used to process the graph-structured data, which effectively captured hierarchical structures and complex spatial relationships within the data and enhanced feature learning capabilities. Experimental results demonstrate that the proposed method achieves an accuracy of 98.12% in diagnosing common fault types, outperforming other intelligent fault diagnosis algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-30
  • 最后修改日期:2025-01-04
  • 录用日期:2024-10-30
  • 在线发布日期:
  • 出版日期:
文章二维码