三维Mesh建筑物立面半监督对比学习语义分割方法
DOI:
作者:
作者单位:

国防科技大学电子科学学院

作者简介:

通讯作者:

中图分类号:

TN391.41

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Semi-supervised Semantic Segmentation Method for 3D Mesh Building Facades Based on Contrastive Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    从三维Mesh数据中对建筑物立面进行语义分割以识别不同对象,是理解和分析三维场景的一种重要途径。当前语义分割方法多数采用全监督模型,其依赖于大量的精细标注数据,训练代价十分昂贵。针对该问题,本文基于半监督学习思想,提出一种基于对比学习和一致性正则化的半监督语义分割方法(SemiSeg-Contrastive and Consistency regularization,SS_CC),用于分割的建筑物立面的三维Mesh数据。在SS_CC方法中,改进后的对比学习模块利用正负样本之间的类可分性,能够更有效地利用类特征信息;提出的基于特征空间的一致性正则化损失函数,从挖掘全局特征的角度增强了所提取建筑物立面特征的鉴别力。实验结果表明,本文提出的SS_CC方法在F1分数、mIoU指标上优于当前一些主流方法,且在建筑物的墙体和窗户上的分割效果相对更好。

    Abstract:

    Semantic segmentation of building facades from 3D mesh data is an important approach to understanding and analyzing 3D scenes. Most current semantic segmentation methods rely heavily on fully supervised models, which, in turn, depend on a large amount of finely annotated data, making them costly. In response to this issue, a semi-supervised learning approach is proposed, introducing a semi-supervised semantic segmentation method based on contrastive learning (SemiSeg-Contrastive and Consistency regularization, SS_CC) to segment building facades in 3D mesh data. The contrastive learning module in SS_CC utilizes the class discriminability of pixel-level features between positive and negative samples, enabling better utilization of class feature information. Additionally, SS_CC includes a feature space-based consistency regularization loss module that further analyzes the overall features of building facades from a global feature perspective. The experimental results show that the proposed SS-CC method outperforms some mainstream methods in F1 score and mIoU, and has relatively better segmentation performance on building walls and windows.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-07
  • 最后修改日期:2024-12-21
  • 录用日期:2024-12-03
  • 在线发布日期:
  • 出版日期:
文章二维码