数据驱动下的反导装备体系效能评估建模与仿真
DOI:
作者:
作者单位:

1.空军工程大学 防空反导学院;2.国防科技大学 信息通信学院

作者简介:

通讯作者:

中图分类号:

E927

基金项目:

国家自然科学基金资助项目(62001059);陕西省自然科学基础研究计划面上项目(2023JCYB509)


Modeling and Simulation of Effectiveness Evaluation of the Anti-missile Equipment System Driven by Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统效能评估方法难以体现反导装备体系的演化性、涌现性和自适应性等问题,提出了一种基于数据驱动的反导装备体系效能评估方法。在分析反导装备体系特点和传统效能评估方法不足的基础上,采用贝叶斯优化算法对卷积神经网络超参数进行优化,构建了贝叶斯卷积神经网络效能评估模型;研究了贝叶斯卷积神经网络(Bayesian convolutional neural network,Bayes-CNN)反导装备体系效能评估算法流程、步骤,形成一套完成的反导装备体系效能评估算法;设计验证仿真实验,输入大量试验数据对Bayes-CNN模型进行训练和学习,以此获得对反导装备体系效能的仿真预测。实验结果表明:数据驱动下的反导装备体系效能评估拟合度较高,期望输出结果与实际输出结果之间的差距非常小,证明该方法具有较高的可行性和可信性。

    Abstract:

    Aiming at the problems that traditional effectiveness evaluation methods can not reflect the evolution, emergence and adaptability of the anti-missile equipment system, a data-driven effectiveness evaluation method of anti-missile equipment system was proposed. Based on the analysis of the characteristics of anti-missile equipment system and the shortage of traditional effectiveness evaluation method. the Bayes optimization algorithm was used to optimize the convolutional neural network hyperparameters, and the efficiency evaluation model of Bayes convolutional neural network was constructed. The flow and steps of Bayes-CNN (Bayesian convolutional neural network) system effectiveness evaluation algorithm were studied, and a set of completed efficiency evaluation algorithm was formed. Designed and validated the simulation experiment, input a lot of test data to Bayes-CNN model for training and learning, so as to obtain the simulation prediction of the effectiveness of anti-missile equipment system. The experimental results show that the error between the actual and expected output is very small, and the non-linear fitting effect is great so that it had a high degree of feasibility and reliability.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-02
  • 最后修改日期:2025-03-31
  • 录用日期:2024-12-04
  • 在线发布日期: 2025-04-03
  • 出版日期:
文章二维码