多尺度学习的红外无人机目标检测算法
作者:
作者单位:

国防科技大学智能科学学院

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金资助项目(52101377)


Multi-scale learning algorithm for infrared UAV target detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    红外相机适用于复杂环境,利用红外图像探测黑飞无人机目标具有重要应用价值。针对无人机目标体积小、在图像中所占像素少、纹理细节信息弱、算法难以有效提取红外无人机目标特征导致检测精度较低等问题,本文提出了多尺度学习的目标检测算法。通过在模型的颈部网络中构造多尺度特征融合结构,引入多尺度特征学习模块,将深层网络和浅层网络的特征进行级联,获取目标在多个尺度上的特征,丰富特征图的语义信息和特征信息,显著提高了算法对小型无人机目标检测精度。在训练过程中使用 SIoU 代替 CIoU 损失函数,使网络模型在训练过程中损失最小化,提高了回归精度。实验结果表明,与其他红外小目标、主流检测算法相比,本文所提方法能有效提高无人机目标的检测精度,在实际应用中可以满足探测无人机目标的检测精度需求。

    Abstract:

    Infrared cameras are suitable for complex environments, and the use of infrared images to detect black-flying UAV targets has important application value. Aiming at the problems such as small size of UAV target, few pixels in the image, weak texture detail information, and the difficulty of the algorithm to effectively extract the infrared UAV target features resulting in low detection accuracy, this paper proposes a target detection algorithm with multi-scale learning. By constructing a multi-scale feature fusion structure in the neck network of the model, introducing a multi-scale feature learning module, cascading the features of the deep network and the shallow network, acquiring the features of the target at multiple scales, enriching the semantic and feature information of the feature map, the algorithm significantly improves the accuracy of the detection of the target of small UAVs. The SIoU is used instead of the CIoU loss function in the training process, which minimizes the loss of the network model in the training process and improves the regression accuracy. The experimental results show that compared with other infrared small targets and mainstream detection algorithms, the method proposed in this paper can effectively improve the detection accuracy of UAV targets, and can meet the detection accuracy requirements for detecting UAV targets in practical applications.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-28
  • 最后修改日期:2025-09-09
  • 录用日期:2024-12-02
  • 在线发布日期:
  • 出版日期:
文章二维码