基于探测线圈的永磁同步电机故障检测技术
作者:
作者单位:

1.西北核技术研究所;2.海军工程大学

作者简介:

通讯作者:

中图分类号:

TM32

基金项目:

电磁能技术全国重点实验室基金(614221724010101),国家自然科学基金资助项目(51977215,52207047,52107063,52207048,52201362)


Fault detection technology for permanent magnet synchronous motor based on detection coil
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    永磁同步电机因其高效率、高转矩密度等优点被广泛应用于推进电机领域。本文针对表贴式永磁同步电机中常见的定子匝间短路和转子偏心开展故障诊断方法研究。现有大部分方法都是基于定子端口电压和电流实现故障特征提取,但从端口获得的集总参数信息易受电机绕组结构、极槽配合等影响,存在有效故障信号被淹没、信息维度小等问题,进而导致检测的信噪比低、动态性能不佳。为获取能直接表征电机状态的内部磁场信息,同时考虑高功率密度电机结构紧凑的特点,本文采用占用空间小、可绕制匝数多的柔性印刷电路板(Flexible printed circuit board,FPCB)制作探测线圈,并将其布置于定子槽口以捕获磁场信息。针对匝间短路和偏心故障,提出了基于故障特征量提取的快速故障诊断方法。对于复合故障,不能通过简单的系数修正实现故障诊断的解耦,提出引入了基于卷积神经网络的故障区分方案,并对比了不同类型学习方法的性能,试验结果表明:复合故障条件下实现了98%左右的匝间短路正确率评估,且选用AlexNet在训练数据占比为60%时的偏心检测误差仅为5%左右。

    Abstract:

    Permanent magnet synchronous motors are widely used in the field of propulsion motors due to their high efficiency, high torque density, and other advantages. This article focuses on the research of fault diagnosis methods for common stator turn short circuits and rotor eccentricity in surface mounted permanent magnet synchronous motors. Most existing methods are based on stator port voltage and current to extract fault features, but the aggregated parameter information obtained from the motor ports is easily affected by winding structure, pole slot coordination, and other factors, resulting in effective fault signals being overwhelmed and small information dimensions, leading to low signal-to-noise ratio and poor dynamic performance in detection. In order to obtain internal magnetic field information that can directly characterize the state of the motor, and considering the compact structure of high-power density motors, this paper uses a flexible printed circuit board (FPCB) with small space occupation and a large number of turns to make a detection coil, and arranges it in the stator slot to capture magnetic field information. A fast fault diagnosis method based on fault feature extraction is proposed for inter turn short circuit and eccentricity faults. For mixed faults, decoupling of fault diagnosis cannot be achieved through simple coefficient correction. A fault discrimination scheme based on convolutional neural networks is proposed, and the performance of different types of learning methods is compared. The experimental results show that under mixed fault conditions, an accuracy evaluation of about 98% for inter turn short circuits is achieved, and the eccentricity detection error of AlexNet is only about 5% when the training data proportion is 60%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-29
  • 最后修改日期:2025-09-17
  • 录用日期:2025-05-16
  • 在线发布日期:
  • 出版日期:
文章二维码