齿轮传动系统健康监测的故障边频簇惩罚回归提取方法
DOI:
作者:
作者单位:

1.华电电力科学研究院有限公司;2.西安交通大学;3.清华大学

作者简介:

通讯作者:

中图分类号:

TH212;TH213.3

基金项目:

国家自然科学基金资助项目(52375121,62233017),中国博士后科学基金资助项目(2021T140540),青年人才托举工程(2022QNRC001)


A Fault Sidebands Cluster Penalized Regression Extraction Method for Health Monitoring of Gear Transmission Systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当齿轮发生故障时,频谱中出现以啮合频率及其高阶谐波频率为中心,以齿轮旋转频率为间隔形成的多阶调制边频簇现象。为了自动聚焦故障边频成分,提出了一种惩罚回归的故障边频簇提取方法,通过自适应稀疏群套索(Adaptive sparse group lasso,ASGL)回归自数据驱动策略确定惩罚系数大小,在线更新频谱权重,以此找到故障边频簇。在稀疏群套索(Sparse group lasso,SGL)回归获得的各边频权重系数基础上,提出了一种新指标稀疏群套索边带指标(Sparse group lasso Sidebands Indicator,SSI)对齿轮传动系统进行健康监测,实现齿轮传动系统早期故障预警与定位。结果分析表明,所提出的方法可以实现更准确的齿轮早期故障预警与故障定位。

    Abstract:

    Gear faults manifest in the frequency spectrum as multi-order modulation sideband clusters centered on the meshing frequency and its higher-order harmonics, spaced by the gear rotation frequency. In order to automatically focus the fault side frequency components, a method of fault side frequency cluster extraction with penalty regression was proposed. The Adaptive sparse group lasso (ASGL) regression self-data-driven strategy was used to determine the penalty coefficient and update the spectrum weight online to find the fault sideband clusters. Based on the sideband weight coefficients obtained from Sparse Group Lasso (SGL) regression, a new index called the Sparse Group Lasso Sidebands Indicator (SSI) was proposed for the health monitoring of gear transmission systems, enabling the early fault warning and location of gear transmission systems. The results show that the proposed method can provide more accurate early fault detection and fault location results.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-17
  • 最后修改日期:2025-04-09
  • 录用日期:2025-04-09
  • 在线发布日期:
  • 出版日期:
文章二维码