S-Cypher: 时态属性图模型上的时态图查询语言
DOI:
作者:
作者单位:

1.浙江大学;2.浙江城市学院

作者简介:

通讯作者:

中图分类号:

TP311

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


S-Cypher: A Temporal Query Language on the Temporal Property Graph Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于传统的图数据模型未考虑时间维度,可能会导致时态查询极其复杂,甚至破坏时间信息的完整性,为此,提出了一种时态属性图数据模型和相应的时态图查询语言S-Cypher。该时态图数据模型使用对象节点表示实体,引入属性节点和值节点表示实体的属性,在节点,以及对象节点之间的边上记录有效时间以表达时态信息,其记录的有效时间均遵循一组时态约束。S-Cypher是Cypher的时态拓展,在保证兼容的同时提供了一套简洁完善的时态图查询语法,包括时态数据类型、时态图模式匹配、时间窗口限定和时态路径。还提供了一套在Neo4j上进行S-Cypher时态图查询的实现方案,实验显示,S-Cypher的查询时间平均是Cypher的1.29倍,表明S-Cypher能够有效地管理Neo4j中的时态图数据,并具有良好的性能。

    Abstract:

    Traditional graph data models lack explicit temporal dimension representation, which may lead to complex temporal queries and potential loss of temporal information integrity. To address this limitation, a temporal property graph data model and a corresponding temporal graph query language called S-Cypher were proposed. The temporal graph data model represents utilized object nodes to represent entities, and introduced property nodes and value nodes to represent entity properties. Valid time was recorded on nodes and edges between object nodes to express temporal information, and the recorded valid time adhered a set of temporal constraints. S-Cypher served as a temporal extension to Cypher, ensured compatibility while providing a concise and comprehensive temporal graph query syntax, including temporal data types, temporal graph pattern matching, time window constraints, and temporal paths. An implementation scheme for executing S-Cypher temporal graph queries on Neo4j was also provided. The experimental results demonstrate that the query time of S-Cypher is on average 1.29 times that of Cypher, indicating that S-Cypher can effectively manage temporal graph data in Neo4j with satisfactory performance.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-07
  • 最后修改日期:2025-03-30
  • 录用日期:2025-03-03
  • 在线发布日期: 2025-04-03
  • 出版日期:
文章二维码